763 lines
28 KiB
C#
763 lines
28 KiB
C#
|
using System;
|
||
|
using System.Collections.Generic;
|
||
|
using System.Reflection;
|
||
|
using Unity.Profiling;
|
||
|
using Unity.Collections;
|
||
|
using Unity.Mathematics;
|
||
|
using Unity.Collections.LowLevel.Unsafe;
|
||
|
|
||
|
namespace UnityEngine.Rendering.Universal.UTess
|
||
|
{
|
||
|
enum UEventType
|
||
|
{
|
||
|
EVENT_POINT = 0,
|
||
|
EVENT_END = 1,
|
||
|
EVENT_START = 2,
|
||
|
};
|
||
|
|
||
|
struct UEvent
|
||
|
{
|
||
|
public float2 a;
|
||
|
public float2 b;
|
||
|
public int idx;
|
||
|
public int type;
|
||
|
};
|
||
|
|
||
|
struct UHull
|
||
|
{
|
||
|
public float2 a;
|
||
|
public float2 b;
|
||
|
public int idx;
|
||
|
|
||
|
public ArraySlice<int> ilarray;
|
||
|
public int ilcount;
|
||
|
public ArraySlice<int> iuarray;
|
||
|
public int iucount;
|
||
|
};
|
||
|
|
||
|
struct UStar
|
||
|
{
|
||
|
public ArraySlice<int> points;
|
||
|
public int pointCount;
|
||
|
};
|
||
|
|
||
|
struct UBounds
|
||
|
{
|
||
|
public double2 min;
|
||
|
public double2 max;
|
||
|
};
|
||
|
|
||
|
struct UCircle
|
||
|
{
|
||
|
public float2 center;
|
||
|
public float radius;
|
||
|
};
|
||
|
|
||
|
struct UTriangle
|
||
|
{
|
||
|
public float2 va;
|
||
|
public float2 vb;
|
||
|
public float2 vc;
|
||
|
public UCircle c;
|
||
|
public float area;
|
||
|
public int3 indices;
|
||
|
};
|
||
|
|
||
|
struct UEncroachingSegment
|
||
|
{
|
||
|
public float2 a;
|
||
|
public float2 b;
|
||
|
public int index;
|
||
|
}
|
||
|
|
||
|
internal interface ICondition2<in T, in U>
|
||
|
{
|
||
|
bool Test(T x, U y, ref float t);
|
||
|
}
|
||
|
|
||
|
struct XCompare : IComparer<double>
|
||
|
{
|
||
|
public int Compare(double a, double b)
|
||
|
{
|
||
|
return (a < b) ? -1 : 1;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
unsafe struct IntersectionCompare : IComparer<int2>
|
||
|
{
|
||
|
public NativeArray<double2> points;
|
||
|
public NativeArray<int2> edges;
|
||
|
|
||
|
public fixed double xvasort[4];
|
||
|
public fixed double xvbsort[4];
|
||
|
|
||
|
public int Compare(int2 a, int2 b)
|
||
|
{
|
||
|
var e1a = edges[a.x];
|
||
|
var e1b = edges[a.y];
|
||
|
var e2a = edges[b.x];
|
||
|
var e2b = edges[b.y];
|
||
|
|
||
|
xvasort[0] = points[e1a.x].x;
|
||
|
xvasort[1] = points[e1a.y].x;
|
||
|
xvasort[2] = points[e1b.x].x;
|
||
|
xvasort[3] = points[e1b.y].x;
|
||
|
|
||
|
xvbsort[0] = points[e2a.x].x;
|
||
|
xvbsort[1] = points[e2a.y].x;
|
||
|
xvbsort[2] = points[e2b.x].x;
|
||
|
xvbsort[3] = points[e2b.y].x;
|
||
|
|
||
|
fixed(double* xvasortPtr = xvasort)
|
||
|
{
|
||
|
ModuleHandle.InsertionSort<double, XCompare>(xvasortPtr, 0, 3, new XCompare());
|
||
|
}
|
||
|
|
||
|
fixed(double* xvbsortPtr = xvbsort)
|
||
|
{
|
||
|
ModuleHandle.InsertionSort<double, XCompare>(xvbsortPtr, 0, 3, new XCompare());
|
||
|
}
|
||
|
|
||
|
for (int i = 0; i < 4; ++i)
|
||
|
if (xvasort[i] - xvbsort[i] != 0)
|
||
|
return xvasort[i] < xvbsort[i] ? -1 : 1;
|
||
|
return points[e1a.x].y < points[e1a.x].y ? -1 : 1;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
struct TessEventCompare : IComparer<UEvent>
|
||
|
{
|
||
|
public int Compare(UEvent a, UEvent b)
|
||
|
{
|
||
|
float f = (a.a.x - b.a.x);
|
||
|
if (0 != f)
|
||
|
return (f > 0) ? 1 : -1;
|
||
|
|
||
|
f = (a.a.y - b.a.y);
|
||
|
if (0 != f)
|
||
|
return (f > 0) ? 1 : -1;
|
||
|
|
||
|
int i = a.type - b.type;
|
||
|
if (0 != i)
|
||
|
return i;
|
||
|
|
||
|
if (a.type != (int)UEventType.EVENT_POINT)
|
||
|
{
|
||
|
float o = ModuleHandle.OrientFast(a.a, a.b, b.b);
|
||
|
if (0 != o)
|
||
|
{
|
||
|
return (o > 0) ? 1 : -1;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return a.idx - b.idx;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
struct TessEdgeCompare : IComparer<int2>
|
||
|
{
|
||
|
public int Compare(int2 a, int2 b)
|
||
|
{
|
||
|
int i = a.x - b.x;
|
||
|
if (0 != i)
|
||
|
return i;
|
||
|
i = a.y - b.y;
|
||
|
return i;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
struct TessCellCompare : IComparer<int3>
|
||
|
{
|
||
|
public int Compare(int3 a, int3 b)
|
||
|
{
|
||
|
int i = a.x - b.x;
|
||
|
if (0 != i)
|
||
|
return i;
|
||
|
i = a.y - b.y;
|
||
|
if (0 != i)
|
||
|
return i;
|
||
|
i = a.z - b.z;
|
||
|
return i;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
struct TessJunctionCompare : IComparer<int2>
|
||
|
{
|
||
|
public int Compare(int2 a, int2 b)
|
||
|
{
|
||
|
int i = a.x - b.x;
|
||
|
if (0 != i)
|
||
|
return i;
|
||
|
i = a.y - b.y;
|
||
|
return i;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
struct DelaEdgeCompare : IComparer<int4>
|
||
|
{
|
||
|
public int Compare(int4 a, int4 b)
|
||
|
{
|
||
|
int i = a.x - b.x;
|
||
|
if (0 != i)
|
||
|
return i;
|
||
|
i = a.y - b.y;
|
||
|
if (0 != i)
|
||
|
return i;
|
||
|
i = a.z - b.z;
|
||
|
if (0 != i)
|
||
|
return i;
|
||
|
i = a.w - b.w;
|
||
|
return i;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
struct TessLink
|
||
|
{
|
||
|
internal NativeArray<int> roots;
|
||
|
internal NativeArray<int> ranks;
|
||
|
|
||
|
internal static TessLink CreateLink(int count, Allocator allocator)
|
||
|
{
|
||
|
TessLink link = new TessLink();
|
||
|
link.roots = new NativeArray<int>(count, allocator);
|
||
|
link.ranks = new NativeArray<int>(count, allocator);
|
||
|
|
||
|
for (int i = 0; i < count; ++i)
|
||
|
{
|
||
|
link.roots[i] = i;
|
||
|
link.ranks[i] = 0;
|
||
|
}
|
||
|
return link;
|
||
|
}
|
||
|
|
||
|
internal static void DestroyLink(TessLink link)
|
||
|
{
|
||
|
link.ranks.Dispose();
|
||
|
link.roots.Dispose();
|
||
|
}
|
||
|
|
||
|
internal int Find(int x)
|
||
|
{
|
||
|
var x0 = x;
|
||
|
while (roots[x] != x)
|
||
|
{
|
||
|
x = roots[x];
|
||
|
}
|
||
|
while (roots[x0] != x)
|
||
|
{
|
||
|
var y = roots[x0];
|
||
|
roots[x0] = x;
|
||
|
x0 = y;
|
||
|
}
|
||
|
return x;
|
||
|
}
|
||
|
|
||
|
internal void Link(int x, int y)
|
||
|
{
|
||
|
var xr = Find(x);
|
||
|
var yr = Find(y);
|
||
|
if (xr == yr)
|
||
|
{
|
||
|
return;
|
||
|
}
|
||
|
var xd = ranks[xr];
|
||
|
var yd = ranks[yr];
|
||
|
if (xd < yd)
|
||
|
{
|
||
|
roots[xr] = yr;
|
||
|
}
|
||
|
else if (yd < xd)
|
||
|
{
|
||
|
roots[yr] = xr;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
roots[yr] = xr;
|
||
|
++ranks[xr];
|
||
|
}
|
||
|
}
|
||
|
};
|
||
|
|
||
|
internal struct ModuleHandle
|
||
|
{
|
||
|
// Max Edge Count with Subdivision allowed. This is already a very relaxed limit
|
||
|
// and anything beyond are basically littered with numerous paths.
|
||
|
internal static readonly int kMaxArea = 65536;
|
||
|
internal static readonly int kMaxEdgeCount = 65536;
|
||
|
internal static readonly int kMaxIndexCount = 65536;
|
||
|
internal static readonly int kMaxVertexCount = 65536;
|
||
|
internal static readonly int kMaxTriangleCount = kMaxIndexCount / 3;
|
||
|
internal static readonly int kMaxRefineIterations = 48;
|
||
|
internal static readonly int kMaxSmoothenIterations = 256;
|
||
|
internal static readonly float kIncrementAreaFactor = 1.2f;
|
||
|
|
||
|
internal static void Copy<T>(NativeArray<T> src, int srcIndex, NativeArray<T> dst, int dstIndex, int length)
|
||
|
where T : struct
|
||
|
{
|
||
|
NativeArray<T>.Copy(src, srcIndex, dst, dstIndex, length);
|
||
|
}
|
||
|
|
||
|
internal static void Copy<T>(NativeArray<T> src, NativeArray<T> dst, int length)
|
||
|
where T : struct
|
||
|
{
|
||
|
Copy(src, 0, dst, 0, length);
|
||
|
}
|
||
|
|
||
|
internal static unsafe void InsertionSort<T, U>(void* array, int lo, int hi, U comp)
|
||
|
where T : struct where U : IComparer<T>
|
||
|
{
|
||
|
int i, j;
|
||
|
T t;
|
||
|
for (i = lo; i < hi; i++)
|
||
|
{
|
||
|
j = i;
|
||
|
t = UnsafeUtility.ReadArrayElement<T>(array, i + 1);
|
||
|
while (j >= lo && comp.Compare(t, UnsafeUtility.ReadArrayElement<T>(array, j)) < 0)
|
||
|
{
|
||
|
UnsafeUtility.WriteArrayElement<T>(array, j + 1, UnsafeUtility.ReadArrayElement<T>(array, j));
|
||
|
j--;
|
||
|
}
|
||
|
UnsafeUtility.WriteArrayElement<T>(array, j + 1, t);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Search Lower Bounds
|
||
|
internal static int GetLower<T, U, X>(NativeArray<T> values, int count, U check, X condition)
|
||
|
where T : struct where U : struct where X : ICondition2<T, U>
|
||
|
{
|
||
|
int l = 0;
|
||
|
int h = count - 1;
|
||
|
int i = l - 1;
|
||
|
while (l <= h)
|
||
|
{
|
||
|
int m = ((int)(l + h)) >> 1;
|
||
|
float t = 0;
|
||
|
if (condition.Test(values[m], check, ref t))
|
||
|
{
|
||
|
i = m;
|
||
|
l = m + 1;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
h = m - 1;
|
||
|
}
|
||
|
}
|
||
|
return i;
|
||
|
}
|
||
|
|
||
|
// Search Upper Bounds
|
||
|
internal static int GetUpper<T, U, X>(NativeArray<T> values, int count, U check, X condition)
|
||
|
where T : struct where U : struct where X : ICondition2<T, U>
|
||
|
{
|
||
|
int l = 0;
|
||
|
int h = count - 1;
|
||
|
int i = h + 1;
|
||
|
while (l <= h)
|
||
|
{
|
||
|
int m = ((int)(l + h)) >> 1;
|
||
|
float t = 0;
|
||
|
if (condition.Test(values[m], check, ref t))
|
||
|
{
|
||
|
i = m;
|
||
|
h = m - 1;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
l = m + 1;
|
||
|
}
|
||
|
}
|
||
|
return i;
|
||
|
}
|
||
|
|
||
|
// Search for Equal
|
||
|
internal static int GetEqual<T, U, X>(NativeArray<T> values, int count, U check, X condition)
|
||
|
where T : struct where U : struct where X : ICondition2<T, U>
|
||
|
{
|
||
|
int l = 0;
|
||
|
int h = count - 1;
|
||
|
while (l <= h)
|
||
|
{
|
||
|
int m = ((int)(l + h)) >> 1;
|
||
|
float t = 0;
|
||
|
condition.Test(values[m], check, ref t);
|
||
|
if (t == 0)
|
||
|
{
|
||
|
return m;
|
||
|
}
|
||
|
else if (t <= 0)
|
||
|
{
|
||
|
l = m + 1;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
h = m - 1;
|
||
|
}
|
||
|
}
|
||
|
return -1;
|
||
|
}
|
||
|
|
||
|
// Simple Orientation test.
|
||
|
internal static float OrientFast(float2 a, float2 b, float2 c)
|
||
|
{
|
||
|
float epsilon = 1.1102230246251565e-16f;
|
||
|
float det = (b.y - a.y) * (c.x - b.x) - (b.x - a.x) * (c.y - b.y);
|
||
|
if (math.abs(det) < epsilon) return 0;
|
||
|
return det;
|
||
|
}
|
||
|
|
||
|
// This is needed when doing PlanarGraph as it requires high precision separation of points.
|
||
|
internal static double OrientFastDouble(double2 a, double2 b, double2 c)
|
||
|
{
|
||
|
double epsilon = 1.1102230246251565e-16f;
|
||
|
double det = (b.y - a.y) * (c.x - b.x) - (b.x - a.x) * (c.y - b.y);
|
||
|
if (math.abs(det) < epsilon) return 0;
|
||
|
return det;
|
||
|
}
|
||
|
|
||
|
internal static UCircle CircumCircle(UTriangle tri)
|
||
|
{
|
||
|
float xa = tri.va.x * tri.va.x;
|
||
|
float xb = tri.vb.x * tri.vb.x;
|
||
|
float xc = tri.vc.x * tri.vc.x;
|
||
|
float ya = tri.va.y * tri.va.y;
|
||
|
float yb = tri.vb.y * tri.vb.y;
|
||
|
float yc = tri.vc.y * tri.vc.y;
|
||
|
float c = 2f * ((tri.vb.x - tri.va.x) * (tri.vc.y - tri.va.y) - (tri.vb.y - tri.va.y) * (tri.vc.x - tri.va.x));
|
||
|
float x = ((tri.vc.y - tri.va.y) * (xb - xa + yb - ya) + (tri.va.y - tri.vb.y) * (xc - xa + yc - ya)) / c;
|
||
|
float y = ((tri.va.x - tri.vc.x) * (xb - xa + yb - ya) + (tri.vb.x - tri.va.x) * (xc - xa + yc - ya)) / c;
|
||
|
float vx = (tri.va.x - x);
|
||
|
float vy = (tri.va.y - y);
|
||
|
return new UCircle { center = new float2(x, y), radius = math.sqrt((vx * vx) + (vy * vy)) };
|
||
|
}
|
||
|
|
||
|
internal static bool IsInsideCircle(UCircle c, float2 v)
|
||
|
{
|
||
|
return math.distance(v, c.center) < c.radius;
|
||
|
}
|
||
|
|
||
|
internal static float TriangleArea(float2 va, float2 vb, float2 vc)
|
||
|
{
|
||
|
float3 a = new float3(va.x, va.y, 0);
|
||
|
float3 b = new float3(vb.x, vb.y, 0);
|
||
|
float3 c = new float3(vc.x, vc.y, 0);
|
||
|
float3 v = math.cross(a - b, a - c);
|
||
|
return math.abs(v.z) * 0.5f;
|
||
|
}
|
||
|
|
||
|
internal static float Sign(float2 p1, float2 p2, float2 p3)
|
||
|
{
|
||
|
return (p1.x - p3.x) * (p2.y - p3.y) - (p2.x - p3.x) * (p1.y - p3.y);
|
||
|
}
|
||
|
|
||
|
internal static bool IsInsideTriangle(float2 pt, float2 v1, float2 v2, float2 v3)
|
||
|
{
|
||
|
float d1, d2, d3;
|
||
|
bool has_neg, has_pos;
|
||
|
|
||
|
d1 = Sign(pt, v1, v2);
|
||
|
d2 = Sign(pt, v2, v3);
|
||
|
d3 = Sign(pt, v3, v1);
|
||
|
|
||
|
has_neg = (d1 < 0) || (d2 < 0) || (d3 < 0);
|
||
|
has_pos = (d1 > 0) || (d2 > 0) || (d3 > 0);
|
||
|
|
||
|
return !(has_neg && has_pos);
|
||
|
}
|
||
|
|
||
|
internal static bool IsInsideTriangleApproximate(float2 pt, float2 v1, float2 v2, float2 v3)
|
||
|
{
|
||
|
float d0, d1, d2, d3;
|
||
|
d0 = TriangleArea(v1, v2, v3);
|
||
|
d1 = TriangleArea(pt, v1, v2);
|
||
|
d2 = TriangleArea(pt, v2, v3);
|
||
|
d3 = TriangleArea(pt, v3, v1);
|
||
|
float epsilon = 1.1102230246251565e-16f;
|
||
|
return Mathf.Abs(d0 - (d1 + d2 + d3)) < epsilon;
|
||
|
}
|
||
|
|
||
|
internal static bool IsInsideCircle(float2 a, float2 b, float2 c, float2 p)
|
||
|
{
|
||
|
float ab = math.dot(a, a);
|
||
|
float cd = math.dot(b, b);
|
||
|
float ef = math.dot(c, c);
|
||
|
|
||
|
float ax = a.x;
|
||
|
float ay = a.y;
|
||
|
float bx = b.x;
|
||
|
float by = b.y;
|
||
|
float cx = c.x;
|
||
|
float cy = c.y;
|
||
|
|
||
|
float circum_x = (ab * (cy - by) + cd * (ay - cy) + ef * (by - ay)) /
|
||
|
(ax * (cy - by) + bx * (ay - cy) + cx * (by - ay));
|
||
|
float circum_y = (ab * (cx - bx) + cd * (ax - cx) + ef * (bx - ax)) /
|
||
|
(ay * (cx - bx) + by * (ax - cx) + cy * (bx - ax));
|
||
|
|
||
|
float2 circum = new float2();
|
||
|
circum.x = circum_x / 2;
|
||
|
circum.y = circum_y / 2;
|
||
|
float circum_radius = math.distance(a, circum);
|
||
|
float dist = math.distance(p, circum);
|
||
|
return circum_radius - dist > 0.00001f;
|
||
|
}
|
||
|
|
||
|
internal static void BuildTriangles(NativeArray<float2> vertices, int vertexCount, NativeArray<int> indices, int indexCount, ref NativeArray<UTriangle> triangles, ref int triangleCount, ref float maxArea, ref float avgArea, ref float minArea)
|
||
|
{
|
||
|
// Check if there are invalid triangles or segments.
|
||
|
for (int i = 0; i < indexCount; i += 3)
|
||
|
{
|
||
|
UTriangle tri = new UTriangle();
|
||
|
var i0 = indices[i + 0];
|
||
|
var i1 = indices[i + 1];
|
||
|
var i2 = indices[i + 2];
|
||
|
tri.va = vertices[i0];
|
||
|
tri.vb = vertices[i1];
|
||
|
tri.vc = vertices[i2];
|
||
|
tri.c = CircumCircle(tri);
|
||
|
tri.area = TriangleArea(tri.va, tri.vb, tri.vc);
|
||
|
maxArea = math.max(tri.area, maxArea);
|
||
|
minArea = math.min(tri.area, minArea);
|
||
|
avgArea = avgArea + tri.area;
|
||
|
triangles[triangleCount++] = tri;
|
||
|
}
|
||
|
avgArea = avgArea / triangleCount;
|
||
|
}
|
||
|
|
||
|
internal static void BuildTriangles(NativeArray<float2> vertices, int vertexCount, NativeArray<int> indices, int indexCount, ref NativeArray<UTriangle> triangles, ref int triangleCount, ref float maxArea, ref float avgArea, ref float minArea, ref float maxEdge, ref float avgEdge, ref float minEdge)
|
||
|
{
|
||
|
// Check if there are invalid triangles or segments.
|
||
|
for (int i = 0; i < indexCount; i += 3)
|
||
|
{
|
||
|
UTriangle tri = new UTriangle();
|
||
|
var i0 = indices[i + 0];
|
||
|
var i1 = indices[i + 1];
|
||
|
var i2 = indices[i + 2];
|
||
|
tri.va = vertices[i0];
|
||
|
tri.vb = vertices[i1];
|
||
|
tri.vc = vertices[i2];
|
||
|
tri.c = CircumCircle(tri);
|
||
|
|
||
|
tri.area = TriangleArea(tri.va, tri.vb, tri.vc);
|
||
|
maxArea = math.max(tri.area, maxArea);
|
||
|
minArea = math.min(tri.area, minArea);
|
||
|
avgArea = avgArea + tri.area;
|
||
|
|
||
|
var e1 = math.distance(tri.va, tri.vb);
|
||
|
var e2 = math.distance(tri.vb, tri.vc);
|
||
|
var e3 = math.distance(tri.vc, tri.va);
|
||
|
maxEdge = math.max(e1, maxEdge);
|
||
|
maxEdge = math.max(e2, maxEdge);
|
||
|
maxEdge = math.max(e3, maxEdge);
|
||
|
minEdge = math.min(e1, minEdge);
|
||
|
minEdge = math.min(e2, minEdge);
|
||
|
minEdge = math.min(e3, minEdge);
|
||
|
|
||
|
avgEdge = avgEdge + e1;
|
||
|
avgEdge = avgEdge + e2;
|
||
|
avgEdge = avgEdge + e3;
|
||
|
triangles[triangleCount++] = tri;
|
||
|
}
|
||
|
avgArea = avgArea / triangleCount;
|
||
|
avgEdge = avgEdge / indexCount;
|
||
|
}
|
||
|
|
||
|
internal static void BuildTrianglesAndEdges(NativeArray<float2> vertices, int vertexCount, NativeArray<int> indices, int indexCount, ref NativeArray<UTriangle> triangles, ref int triangleCount, ref NativeArray<int4> delaEdges, ref int delaEdgeCount, ref float maxArea, ref float avgArea, ref float minArea)
|
||
|
{
|
||
|
// Check if there are invalid triangles or segments.
|
||
|
for (int i = 0; i < indexCount; i += 3)
|
||
|
{
|
||
|
UTriangle tri = new UTriangle();
|
||
|
var i0 = indices[i + 0];
|
||
|
var i1 = indices[i + 1];
|
||
|
var i2 = indices[i + 2];
|
||
|
tri.va = vertices[i0];
|
||
|
tri.vb = vertices[i1];
|
||
|
tri.vc = vertices[i2];
|
||
|
tri.c = CircumCircle(tri);
|
||
|
tri.area = TriangleArea(tri.va, tri.vb, tri.vc);
|
||
|
maxArea = math.max(tri.area, maxArea);
|
||
|
minArea = math.min(tri.area, minArea);
|
||
|
avgArea = avgArea + tri.area;
|
||
|
tri.indices = new int3(i0, i1, i2);
|
||
|
|
||
|
// Outputs.
|
||
|
delaEdges[delaEdgeCount++] = new int4(math.min(i0, i1), math.max(i0, i1), triangleCount, -1);
|
||
|
delaEdges[delaEdgeCount++] = new int4(math.min(i1, i2), math.max(i1, i2), triangleCount, -1);
|
||
|
delaEdges[delaEdgeCount++] = new int4(math.min(i2, i0), math.max(i2, i0), triangleCount, -1);
|
||
|
triangles[triangleCount++] = tri;
|
||
|
}
|
||
|
avgArea = avgArea / triangleCount;
|
||
|
}
|
||
|
|
||
|
static void CopyGraph(NativeArray<float2> srcPoints, int srcPointCount, ref NativeArray<float2> dstPoints, ref int dstPointCount, NativeArray<int2> srcEdges, int srcEdgeCount, ref NativeArray<int2> dstEdges, ref int dstEdgeCount)
|
||
|
{
|
||
|
dstEdgeCount = srcEdgeCount;
|
||
|
dstPointCount = srcPointCount;
|
||
|
Copy(srcEdges, dstEdges, srcEdgeCount);
|
||
|
Copy(srcPoints, dstPoints, srcPointCount);
|
||
|
}
|
||
|
|
||
|
static void CopyGeometry(NativeArray<int> srcIndices, int srcIndexCount, ref NativeArray<int> dstIndices, ref int dstIndexCount, NativeArray<float2> srcVertices, int srcVertexCount, ref NativeArray<float2> dstVertices, ref int dstVertexCount)
|
||
|
{
|
||
|
dstIndexCount = srcIndexCount;
|
||
|
dstVertexCount = srcVertexCount;
|
||
|
Copy(srcIndices, dstIndices, srcIndexCount);
|
||
|
Copy(srcVertices, dstVertices, srcVertexCount);
|
||
|
}
|
||
|
|
||
|
static void TransferOutput(NativeArray<int2> srcEdges, int srcEdgeCount, ref NativeArray<int2> dstEdges, ref int dstEdgeCount, NativeArray<int> srcIndices, int srcIndexCount, ref NativeArray<int> dstIndices, ref int dstIndexCount, NativeArray<float2> srcVertices, int srcVertexCount, ref NativeArray<float2> dstVertices, ref int dstVertexCount)
|
||
|
{
|
||
|
dstEdgeCount = srcEdgeCount;
|
||
|
dstIndexCount = srcIndexCount;
|
||
|
dstVertexCount = srcVertexCount;
|
||
|
Copy(srcEdges, dstEdges, srcEdgeCount);
|
||
|
Copy(srcIndices, dstIndices, srcIndexCount);
|
||
|
Copy(srcVertices, dstVertices, srcVertexCount);
|
||
|
}
|
||
|
|
||
|
static void GraphConditioner(NativeArray<float2> points, ref NativeArray<float2> pgPoints, ref int pgPointCount, ref NativeArray<int2> pgEdges, ref int pgEdgeCount, bool resetTopology)
|
||
|
{
|
||
|
var min = new float2(math.INFINITY, math.INFINITY);
|
||
|
var max = float2.zero;
|
||
|
for (int i = 0; i < points.Length; ++i)
|
||
|
{
|
||
|
min = math.min(points[i], min);
|
||
|
max = math.max(points[i], max);
|
||
|
}
|
||
|
|
||
|
var ext = (max - min);
|
||
|
var mid = ext * 0.5f;
|
||
|
var kNonRect = 0.0001f;
|
||
|
|
||
|
// Construct a simple convex hull rect!.
|
||
|
pgPointCount = resetTopology ? 0 : pgPointCount;
|
||
|
var pc = pgPointCount;
|
||
|
pgPoints[pgPointCount++] = new float2(min.x, min.y); pgPoints[pgPointCount++] = new float2(min.x - kNonRect, min.y + mid.y); pgPoints[pgPointCount++] = new float2(min.x, max.y); pgPoints[pgPointCount++] = new float2(min.x + mid.x, max.y + kNonRect);
|
||
|
pgPoints[pgPointCount++] = new float2(max.x, max.y); pgPoints[pgPointCount++] = new float2(max.x + kNonRect, min.y + mid.y); pgPoints[pgPointCount++] = new float2(max.x, min.y); pgPoints[pgPointCount++] = new float2(min.x + mid.x, min.y - kNonRect);
|
||
|
|
||
|
pgEdgeCount = 8;
|
||
|
pgEdges[0] = new int2(pc + 0, pc + 1); pgEdges[1] = new int2(pc + 1, pc + 2); pgEdges[2] = new int2(pc + 2, pc + 3); pgEdges[3] = new int2(pc + 3, pc + 4);
|
||
|
pgEdges[4] = new int2(pc + 4, pc + 5); pgEdges[5] = new int2(pc + 5, pc + 6); pgEdges[6] = new int2(pc + 6, pc + 7); pgEdges[7] = new int2(pc + 7, pc + 0);
|
||
|
}
|
||
|
|
||
|
// Reorder vertices.
|
||
|
static void Reorder(int startVertexCount, int index, ref NativeArray<int> indices, ref int indexCount, ref NativeArray<float2> vertices, ref int vertexCount)
|
||
|
{
|
||
|
var found = false;
|
||
|
|
||
|
for (var i = 0; i < indexCount; ++i)
|
||
|
{
|
||
|
if (indices[i] != index) continue;
|
||
|
found = true;
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
if (!found)
|
||
|
{
|
||
|
vertexCount--;
|
||
|
vertices[index] = vertices[vertexCount];
|
||
|
for (var i = 0; i < indexCount; ++i)
|
||
|
if (indices[i] == vertexCount)
|
||
|
indices[i] = index;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Perform Sanitization.
|
||
|
internal static void VertexCleanupConditioner(int startVertexCount, ref NativeArray<int> indices, ref int indexCount, ref NativeArray<float2> vertices, ref int vertexCount)
|
||
|
{
|
||
|
for (int i = startVertexCount; i < vertexCount; ++i)
|
||
|
{
|
||
|
Reorder(startVertexCount, i, ref indices, ref indexCount, ref vertices, ref vertexCount);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
public static float4 ConvexQuad(Allocator allocator, NativeArray<float2> points, NativeArray<int2> edges, ref NativeArray<float2> outVertices, ref int outVertexCount, ref NativeArray<int> outIndices, ref int outIndexCount, ref NativeArray<int2> outEdges, ref int outEdgeCount)
|
||
|
{
|
||
|
// Inputs are garbage, just early out.
|
||
|
float4 ret = float4.zero;
|
||
|
outEdgeCount = 0; outIndexCount = 0; outVertexCount = 0;
|
||
|
if (points.Length < 3 || points.Length >= kMaxVertexCount)
|
||
|
return ret;
|
||
|
|
||
|
// Ensure inputs form a proper PlanarGraph.
|
||
|
int pgEdgeCount = 0, pgPointCount = 0;
|
||
|
NativeArray<int2> pgEdges = new NativeArray<int2>(kMaxEdgeCount, allocator);
|
||
|
NativeArray<float2> pgPoints = new NativeArray<float2>(kMaxVertexCount, allocator);
|
||
|
|
||
|
// Valid Edges and Paths, correct the Planar Graph. If invalid create a simple convex hull rect.
|
||
|
GraphConditioner(points, ref pgPoints, ref pgPointCount, ref pgEdges, ref pgEdgeCount, true);
|
||
|
Tessellator.Tessellate(allocator, pgPoints, pgPointCount, pgEdges, pgEdgeCount, ref outVertices, ref outVertexCount, ref outIndices, ref outIndexCount);
|
||
|
|
||
|
// Dispose Temp Memory.
|
||
|
pgPoints.Dispose();
|
||
|
pgEdges.Dispose();
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
public static float4 Tessellate(Allocator allocator, NativeArray<float2> points, NativeArray<int2> edges, ref NativeArray<float2> outVertices, ref int outVertexCount, ref NativeArray<int> outIndices, ref int outIndexCount, ref NativeArray<int2> outEdges, ref int outEdgeCount)
|
||
|
{
|
||
|
// Inputs are garbage, just early out.
|
||
|
float4 ret = float4.zero;
|
||
|
outEdgeCount = 0; outIndexCount = 0; outVertexCount = 0;
|
||
|
if (points.Length < 3 || points.Length >= kMaxVertexCount)
|
||
|
return ret;
|
||
|
|
||
|
// Ensure inputs form a proper PlanarGraph.
|
||
|
bool validGraph = false, handleEdgeCase = false;
|
||
|
int pgEdgeCount = 0, pgPointCount = 0;
|
||
|
NativeArray<int2> pgEdges = new NativeArray<int2>(edges.Length * 8, allocator);
|
||
|
NativeArray<float2> pgPoints = new NativeArray<float2>(points.Length * 4, allocator);
|
||
|
|
||
|
// Valid Edges and Paths, correct the Planar Graph. If invalid create a simple convex hull rect.
|
||
|
if (0 != edges.Length)
|
||
|
{
|
||
|
validGraph = PlanarGraph.Validate(allocator, points, points.Length, edges, edges.Length, ref pgPoints, ref pgPointCount, ref pgEdges, ref pgEdgeCount);
|
||
|
}
|
||
|
|
||
|
// Fallbacks are now handled by the Higher level packages. Enable if UTess needs to handle it.
|
||
|
// #if UTESS_QUAD_FALLBACK
|
||
|
// if (!validGraph)
|
||
|
// {
|
||
|
// pgPointCount = 0;
|
||
|
// handleEdgeCase = true;
|
||
|
// ModuleHandle.Copy(points, pgPoints, points.Length);
|
||
|
// GraphConditioner(points, ref pgPoints, ref pgPointCount, ref pgEdges, ref pgEdgeCount, false);
|
||
|
// }
|
||
|
// #else
|
||
|
|
||
|
// If its not a valid Graph simply return back input Data without triangulation instead of going through UTess (pointless wasted cpu cycles).
|
||
|
if (!validGraph)
|
||
|
{
|
||
|
outEdgeCount = edges.Length;
|
||
|
outVertexCount = points.Length;
|
||
|
ModuleHandle.Copy(edges, outEdges, edges.Length);
|
||
|
ModuleHandle.Copy(points, outVertices, points.Length);
|
||
|
}
|
||
|
|
||
|
// Do a proper Delaunay Triangulation if Inputs are valid.
|
||
|
if (pgPointCount > 2 && pgEdgeCount > 2)
|
||
|
{
|
||
|
// Tessellate does not add new points, only PG and SD does. Assuming each point creates a degenerate triangle, * 4 is more than enough.
|
||
|
NativeArray<int> tsIndices = new NativeArray<int>(pgPointCount * 8, allocator);
|
||
|
NativeArray<float2> tsVertices = new NativeArray<float2>(pgPointCount * 4, allocator);
|
||
|
int tsIndexCount = 0, tsVertexCount = 0;
|
||
|
validGraph = Tessellator.Tessellate(allocator, pgPoints, pgPointCount, pgEdges, pgEdgeCount, ref tsVertices, ref tsVertexCount, ref tsIndices, ref tsIndexCount);
|
||
|
if (validGraph)
|
||
|
{
|
||
|
// Copy Out
|
||
|
TransferOutput(pgEdges, pgEdgeCount, ref outEdges, ref outEdgeCount, tsIndices, tsIndexCount, ref outIndices, ref outIndexCount, tsVertices, tsVertexCount, ref outVertices, ref outVertexCount);
|
||
|
if (handleEdgeCase == true)
|
||
|
outEdgeCount = 0;
|
||
|
}
|
||
|
tsVertices.Dispose();
|
||
|
tsIndices.Dispose();
|
||
|
}
|
||
|
|
||
|
// Dispose Temp Memory.
|
||
|
pgPoints.Dispose();
|
||
|
pgEdges.Dispose();
|
||
|
return ret;
|
||
|
}
|
||
|
}
|
||
|
}
|