602 lines
19 KiB
HLSL
602 lines
19 KiB
HLSL
|
#ifndef UNITY_PHYSICALLY_BASED_SKY_COMMON_INCLUDED
|
||
|
#define UNITY_PHYSICALLY_BASED_SKY_COMMON_INCLUDED
|
||
|
|
||
|
#include "Packages/com.unity.render-pipelines.core/ShaderLibrary/Common.hlsl"
|
||
|
#include "Packages/com.unity.render-pipelines.core/ShaderLibrary/Color.hlsl"
|
||
|
#include "Packages/com.unity.render-pipelines.core/ShaderLibrary/CommonLighting.hlsl"
|
||
|
#include "Packages/com.unity.render-pipelines.core/ShaderLibrary/VolumeRendering.hlsl"
|
||
|
#include "Packages/com.unity.render-pipelines.core/ShaderLibrary/Sampling/Sampling.hlsl"
|
||
|
#include "Packages/com.unity.render-pipelines.high-definition/Runtime/ShaderLibrary/ShaderVariablesGlobal.hlsl"
|
||
|
#include "Packages/com.unity.render-pipelines.high-definition/Runtime/Sky/PhysicallyBasedSky/ShaderVariablesPhysicallyBasedSky.cs.hlsl"
|
||
|
|
||
|
TEXTURE2D(_GroundIrradianceTexture);
|
||
|
|
||
|
// Emulate a 4D texture with a "deep" 3D texture.
|
||
|
TEXTURE3D(_AirSingleScatteringTexture);
|
||
|
TEXTURE3D(_AerosolSingleScatteringTexture);
|
||
|
TEXTURE3D(_MultipleScatteringTexture);
|
||
|
|
||
|
#ifndef UNITY_SHADER_VARIABLES_INCLUDED
|
||
|
SAMPLER(s_linear_clamp_sampler);
|
||
|
#endif
|
||
|
|
||
|
#define _PlanetCenterPosition _PlanetCenterRadius.xyz // camera relative
|
||
|
#define _GroundAlbedo _GroundAlbedo_PlanetRadius.xyz
|
||
|
#define _PlanetUp _PlanetUpAltitude.xyz
|
||
|
#define _CameraAltitude _PlanetUpAltitude.w
|
||
|
|
||
|
#ifndef _PlanetaryRadius
|
||
|
#define _PlanetaryRadius _PlanetCenterRadius.w
|
||
|
#endif
|
||
|
|
||
|
// To reduce banding at low sun angles on 32bits, we have to 'pre expose' ms values as they are very small
|
||
|
#define MS_EXPOSURE 100.0f
|
||
|
#define MS_EXPOSURE_INV 0.01f
|
||
|
|
||
|
// Computes (a^2 - b^2) in a numerically stable way.
|
||
|
float DifferenceOfSquares(float a, float b)
|
||
|
{
|
||
|
return (a - b) * (a + b);
|
||
|
}
|
||
|
|
||
|
float3 AirScatter(float height)
|
||
|
{
|
||
|
return _AirSeaLevelScattering.rgb * exp(-height * _AirDensityFalloff);
|
||
|
}
|
||
|
|
||
|
float AirPhase(float LdotV)
|
||
|
{
|
||
|
return RayleighPhaseFunction(-LdotV);
|
||
|
}
|
||
|
|
||
|
float3 AerosolScatter(float height)
|
||
|
{
|
||
|
return _AerosolSeaLevelScattering.rgb * exp(-height * _AerosolDensityFalloff);
|
||
|
}
|
||
|
|
||
|
float AerosolPhase(float LdotV)
|
||
|
{
|
||
|
return _AerosolPhasePartConstant * CornetteShanksPhasePartVarying(_AerosolAnisotropy, -LdotV);
|
||
|
}
|
||
|
|
||
|
float OzoneDensity(float height)
|
||
|
{
|
||
|
return saturate(1 - abs(height * _OzoneScaleOffset.x + _OzoneScaleOffset.y));
|
||
|
}
|
||
|
|
||
|
float3 AtmosphereExtinction(float height)
|
||
|
{
|
||
|
const float densityMie = exp(-height * _AerosolDensityFalloff);
|
||
|
const float densityRayleigh = exp(-height * _AirDensityFalloff);
|
||
|
const float densityOzone = OzoneDensity(height);
|
||
|
|
||
|
float3 extinction = densityMie * _AerosolSeaLevelExtinction
|
||
|
+ densityRayleigh * _AirSeaLevelExtinction.xyz
|
||
|
+ densityOzone * _OzoneSeaLevelExtinction.xyz;
|
||
|
|
||
|
return max(extinction, FLT_MIN);
|
||
|
}
|
||
|
|
||
|
// For multiple scattering.
|
||
|
// Assume that, after multiple bounces, the effect of anisotropy is lost.
|
||
|
float3 AtmospherePhaseScatter(float LdotV, float height)
|
||
|
{
|
||
|
return AirPhase(LdotV) * (AirScatter(height) + AerosolScatter(height));
|
||
|
}
|
||
|
|
||
|
// Returns the closest hit in X and the farthest hit in Y.
|
||
|
// Returns a negative number if there's no intersection.
|
||
|
// (result.y >= 0) indicates success.
|
||
|
// (result.x < 0) indicates that we are inside the sphere.
|
||
|
float2 IntersectSphere(float sphereRadius, float cosChi,
|
||
|
float radialDistance, float rcpRadialDistance)
|
||
|
{
|
||
|
// r_o = float2(0, r)
|
||
|
// r_d = float2(sinChi, cosChi)
|
||
|
// p_s = r_o + t * r_d
|
||
|
//
|
||
|
// R^2 = dot(r_o + t * r_d, r_o + t * r_d)
|
||
|
// R^2 = ((r_o + t * r_d).x)^2 + ((r_o + t * r_d).y)^2
|
||
|
// R^2 = t^2 + 2 * dot(r_o, r_d) + dot(r_o, r_o)
|
||
|
//
|
||
|
// t^2 + 2 * dot(r_o, r_d) + dot(r_o, r_o) - R^2 = 0
|
||
|
//
|
||
|
// Solve: t^2 + (2 * b) * t + c = 0, where
|
||
|
// b = r * cosChi,
|
||
|
// c = r^2 - R^2.
|
||
|
//
|
||
|
// t = (-2 * b + sqrt((2 * b)^2 - 4 * c)) / 2
|
||
|
// t = -b + sqrt(b^2 - c)
|
||
|
// t = -b + sqrt((r * cosChi)^2 - (r^2 - R^2))
|
||
|
// t = -b + r * sqrt((cosChi)^2 - 1 + (R/r)^2)
|
||
|
// t = -b + r * sqrt(d)
|
||
|
// t = r * (-cosChi + sqrt(d))
|
||
|
//
|
||
|
// Why do we do this? Because it is more numerically robust.
|
||
|
|
||
|
float d = Sq(sphereRadius * rcpRadialDistance) - saturate(1 - cosChi * cosChi);
|
||
|
|
||
|
// Return the value of 'd' for debugging purposes.
|
||
|
return (d < 0) ? d : (radialDistance * float2(-cosChi - sqrt(d),
|
||
|
-cosChi + sqrt(d)));
|
||
|
}
|
||
|
|
||
|
// TODO: remove.
|
||
|
float2 IntersectSphere(float sphereRadius, float cosChi, float radialDistance)
|
||
|
{
|
||
|
return IntersectSphere(sphereRadius, cosChi, radialDistance, rcp(radialDistance));
|
||
|
}
|
||
|
|
||
|
// O must be planet-relative.
|
||
|
float2 IntersectAtmosphere(float3 O, float3 V, out float3 N, out float r)
|
||
|
{
|
||
|
const float A = _AtmosphericRadius;
|
||
|
|
||
|
float3 P = O;
|
||
|
|
||
|
N = normalize(P);
|
||
|
r = length(P);
|
||
|
|
||
|
float2 t = IntersectSphere(A, dot(N, -V), r);
|
||
|
|
||
|
if (t.y >= 0) // Success?
|
||
|
{
|
||
|
// If we are already inside, do not step back.
|
||
|
t.x = max(t.x, 0);
|
||
|
|
||
|
if (t.x > 0)
|
||
|
{
|
||
|
P = P + t.x * -V;
|
||
|
N = normalize(P);
|
||
|
r = A;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return t;
|
||
|
}
|
||
|
|
||
|
float2 IntersectRayCylinder(float3 cylAxis, float cylRadius,
|
||
|
float radialDistance, float3 rayDir)
|
||
|
{
|
||
|
// rayOrigin = {0, 0, r}.
|
||
|
float r = radialDistance;
|
||
|
float x = dot(cylAxis, rayDir);
|
||
|
|
||
|
// Solve: t^2 + 2 * (b / a) * t + (c / a) = 0.
|
||
|
float a = saturate(1.0 - x * x);
|
||
|
float b = rcp(a) * (rayDir.z - x * cylAxis.z);
|
||
|
float c = rcp(a) * (saturate(1 - cylAxis.z * cylAxis.z) - Sq(cylRadius * rcp(r)));
|
||
|
float d = b * b - c;
|
||
|
|
||
|
return ((abs(a) < FLT_EPS) || (d < 0)) ? -1 : r * float2(-b - sqrt(d),
|
||
|
-b + sqrt(d));
|
||
|
}
|
||
|
|
||
|
float MapQuadraticHeight(float height)
|
||
|
{
|
||
|
// TODO: we should adjust sub-texel coordinates
|
||
|
// to account for the non-linear height distribution.
|
||
|
return sqrt(height * _RcpAtmosphericDepth);
|
||
|
}
|
||
|
|
||
|
// Returns the height.
|
||
|
float UnmapQuadraticHeight(float v)
|
||
|
{
|
||
|
return (v * v) * _AtmosphericDepth;
|
||
|
}
|
||
|
|
||
|
float ComputeCosineOfHorizonAngle(float r)
|
||
|
{
|
||
|
float R = _PlanetaryRadius;
|
||
|
float sinHor = R * rcp(r);
|
||
|
return -sqrt(saturate(1 - sinHor * sinHor));
|
||
|
}
|
||
|
|
||
|
// We use the parametrization from "Outdoor Light Scattering Sample Update" by E. Yusov.
|
||
|
float2 MapAerialPerspective(float cosChi, float height, float texelSize)
|
||
|
{
|
||
|
float R = _PlanetaryRadius;
|
||
|
float r = height + R;
|
||
|
float cosHor = ComputeCosineOfHorizonAngle(r);
|
||
|
|
||
|
// Above horizon?
|
||
|
float s = FastSign(cosChi - cosHor);
|
||
|
|
||
|
// float x = (cosChi - cosHor) * rcp(1 - s * cosHor); // in [-1, 1]
|
||
|
// float m = pow(abs(x), 0.5);
|
||
|
float m = sqrt(abs(cosChi - cosHor)) * rsqrt(1 - s * cosHor);
|
||
|
|
||
|
// Lighting must be discontinuous across the horizon.
|
||
|
// Thus, we offset by half a texel to avoid interpolation artifacts.
|
||
|
m = s * max(m, texelSize);
|
||
|
|
||
|
float u = saturate(m * 0.5 + 0.5);
|
||
|
float v = MapQuadraticHeight(height);
|
||
|
|
||
|
return float2(u, v);
|
||
|
}
|
||
|
|
||
|
float2 MapAerialPerspectiveAboveHorizon(float cosChi, float height)
|
||
|
{
|
||
|
float R = _PlanetaryRadius;
|
||
|
float r = height + R;
|
||
|
float cosHor = ComputeCosineOfHorizonAngle(r);
|
||
|
|
||
|
float u = saturate(sqrt(cosChi - cosHor) * rsqrt(1 - cosHor));
|
||
|
float v = MapQuadraticHeight(height);
|
||
|
|
||
|
return float2(u, v);
|
||
|
}
|
||
|
|
||
|
// returns {cosChi, height}.
|
||
|
float2 UnmapAerialPerspective(float2 uv)
|
||
|
{
|
||
|
float height = UnmapQuadraticHeight(uv.y);
|
||
|
float R = _PlanetaryRadius;
|
||
|
float r = height + R;
|
||
|
float cosHor = ComputeCosineOfHorizonAngle(r);
|
||
|
|
||
|
float m = uv.x * 2 - 1;
|
||
|
float s = FastSign(m);
|
||
|
float x = s * (m * m);
|
||
|
|
||
|
float cosChi = x * (1 - s * cosHor) + cosHor;
|
||
|
|
||
|
cosChi += s * FLT_EPS; // Avoid the (cosChi == cosHor) case due to the FP arithmetic
|
||
|
|
||
|
return float2(cosChi, height);
|
||
|
}
|
||
|
|
||
|
float2 UnmapAerialPerspectiveAboveHorizon(float2 uv)
|
||
|
{
|
||
|
float height = UnmapQuadraticHeight(uv.y);
|
||
|
float R = _PlanetaryRadius;
|
||
|
float r = height + R;
|
||
|
float cosHor = ComputeCosineOfHorizonAngle(r);
|
||
|
|
||
|
float x = (uv.x * uv.x);
|
||
|
|
||
|
float cosChi = x * (1 - cosHor) + cosHor;
|
||
|
|
||
|
cosChi += FLT_EPS; // Avoid the (cosChi == cosHor) case due to the FP arithmetic
|
||
|
|
||
|
return float2(cosChi, height);
|
||
|
}
|
||
|
|
||
|
float ChapmanUpperApprox(float z, float cosTheta)
|
||
|
{
|
||
|
float c = cosTheta;
|
||
|
float n = 0.761643 * ((1 + 2 * z) - (c * c * z));
|
||
|
float d = c * z + sqrt(z * (1.47721 + 0.273828 * (c * c * z)));
|
||
|
|
||
|
return 0.5 * c + (n * rcp(d));
|
||
|
}
|
||
|
|
||
|
float ChapmanHorizontal(float z)
|
||
|
{
|
||
|
float r = rsqrt(z);
|
||
|
float s = z * r; // sqrt(z)
|
||
|
|
||
|
return 0.626657 * (r + 2 * s);
|
||
|
}
|
||
|
|
||
|
// z = (n * r), Z = (n * R).
|
||
|
float RescaledChapmanFunction(float z, float Z, float cosTheta)
|
||
|
{
|
||
|
float sinTheta = sqrt(saturate(1 - cosTheta * cosTheta));
|
||
|
|
||
|
// cos(Pi - theta) = -cos(theta).
|
||
|
float ch = ChapmanUpperApprox(z, abs(cosTheta)) * exp(Z - z); // Rescaling adds 'exp'
|
||
|
|
||
|
if (cosTheta < 0)
|
||
|
{
|
||
|
// z_0 = n * r_0 = (n * r) * sin(theta) = z * sin(theta).
|
||
|
// Ch(z, theta) = 2 * exp(z - z_0) * Ch(z_0, Pi/2) - Ch(z, Pi - theta).
|
||
|
float z_0 = z * sinTheta;
|
||
|
float a = 2 * ChapmanHorizontal(z_0);
|
||
|
float b = exp(Z - z_0); // Rescaling cancels out 'z' and adds 'Z'
|
||
|
float ch_2 = a * b;
|
||
|
|
||
|
ch = ch_2 - ch;
|
||
|
}
|
||
|
|
||
|
return ch;
|
||
|
}
|
||
|
|
||
|
// This is a very crude approximation, should be reworked
|
||
|
// It estimates the result by integrating with 4 samples
|
||
|
float ComputeOzoneOpticalDepth(float r, float cosTheta, float distAlongRay)
|
||
|
{
|
||
|
const float R = _PlanetaryRadius;
|
||
|
|
||
|
float2 tInner = IntersectSphere(_OzoneLayerStart, cosTheta, r);
|
||
|
float2 tOuter = IntersectSphere(_OzoneLayerEnd, cosTheta, r);
|
||
|
float tEntry, tEntry2, tExit, tExit2;
|
||
|
|
||
|
if (tInner.x < 0.0 && tInner.y >= 0.0) // Below the lower bound
|
||
|
{
|
||
|
// The ray starts at the intersection with the lower bound and ends at the intersection with the outer bound
|
||
|
tEntry = tInner.y;
|
||
|
tExit2 = tOuter.y;
|
||
|
tEntry2 = tExit = (tExit2 - tEntry) * 0.5f;
|
||
|
}
|
||
|
else // Inside or above the volume
|
||
|
{
|
||
|
// The ray starts at the intersection with the outer bound, or at 0 if we are inside
|
||
|
// The ray ends at the lower bound if we hit it, at the outer bound otherwise
|
||
|
tEntry = max(tOuter.x, 0.0f);
|
||
|
tExit = tInner.x >= 0.0 ? tInner.x : tOuter.y;
|
||
|
|
||
|
// If we hit the lower bound, we may intersect the volume a second time
|
||
|
if (tInner.x >= 0.0 && distAlongRay > tInner.y)
|
||
|
{
|
||
|
tEntry2 = tInner.y;
|
||
|
tExit2 = tOuter.y;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
tExit2 = tExit;
|
||
|
tEntry2 = tExit = (tExit2 - tEntry) * 0.5f;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
tExit = min(tExit, distAlongRay);
|
||
|
tExit2 = min(tExit2, distAlongRay);
|
||
|
|
||
|
float ozoneOD = 0.0f;
|
||
|
const uint count = 2;
|
||
|
float dt = max(tExit-tEntry, 0) * rcp(count);
|
||
|
float dt2 = max(tExit2-tEntry2, 0) * rcp(count);
|
||
|
|
||
|
[unroll]
|
||
|
for (uint i = 0; i < count; i++)
|
||
|
{
|
||
|
float t = lerp(tEntry, tExit, (i+0.5f) * rcp(count));
|
||
|
float t2 = lerp(tEntry2, tExit2, (i+0.5f) * rcp(count));
|
||
|
float h = sqrt(r*r + t * (2*r*cosTheta + t)) - R;
|
||
|
float h2 = sqrt(r*r + t2 * (2*r*cosTheta + t2)) - R;
|
||
|
|
||
|
ozoneOD += OzoneDensity(h) * dt;
|
||
|
ozoneOD += OzoneDensity(h2) * dt2;
|
||
|
}
|
||
|
|
||
|
return ozoneOD * 0.6f;
|
||
|
}
|
||
|
|
||
|
float3 ComputeAtmosphericOpticalDepth(float r, float cosTheta, bool aboveHorizon)
|
||
|
{
|
||
|
const float2 n = float2(_AirDensityFalloff, _AerosolDensityFalloff);
|
||
|
const float2 H = float2(_AirScaleHeight, _AerosolScaleHeight);
|
||
|
const float R = _PlanetaryRadius;
|
||
|
|
||
|
float2 z = n * r;
|
||
|
float2 Z = n * R;
|
||
|
|
||
|
float sinTheta = sqrt(saturate(1 - cosTheta * cosTheta));
|
||
|
|
||
|
float2 ch;
|
||
|
ch.x = ChapmanUpperApprox(z.x, abs(cosTheta)) * exp(Z.x - z.x); // Rescaling adds 'exp'
|
||
|
ch.y = ChapmanUpperApprox(z.y, abs(cosTheta)) * exp(Z.y - z.y); // Rescaling adds 'exp'
|
||
|
|
||
|
if (!aboveHorizon) // Below horizon, intersect sphere
|
||
|
{
|
||
|
float sinGamma = (r / R) * sinTheta;
|
||
|
float cosGamma = sqrt(saturate(1 - sinGamma * sinGamma));
|
||
|
|
||
|
float2 ch_2;
|
||
|
ch_2.x = ChapmanUpperApprox(Z.x, cosGamma); // No need to rescale
|
||
|
ch_2.y = ChapmanUpperApprox(Z.y, cosGamma); // No need to rescale
|
||
|
|
||
|
ch = ch_2 - ch;
|
||
|
}
|
||
|
else if (cosTheta < 0) // Above horizon, lower hemisphere
|
||
|
{
|
||
|
// z_0 = n * r_0 = (n * r) * sin(theta) = z * sin(theta).
|
||
|
// Ch(z, theta) = 2 * exp(z - z_0) * Ch(z_0, Pi/2) - Ch(z, Pi - theta).
|
||
|
float2 z_0 = z * sinTheta;
|
||
|
float2 b = exp(Z - z_0); // Rescaling cancels out 'z' and adds 'Z'
|
||
|
float2 a;
|
||
|
a.x = 2 * ChapmanHorizontal(z_0.x);
|
||
|
a.y = 2 * ChapmanHorizontal(z_0.y);
|
||
|
float2 ch_2 = a * b;
|
||
|
|
||
|
ch = ch_2 - ch;
|
||
|
}
|
||
|
|
||
|
float ozone = aboveHorizon ? ComputeOzoneOpticalDepth(r, cosTheta, FLT_MAX) : 0.0f;
|
||
|
float3 optDepth = float3(ch * H, ozone);
|
||
|
|
||
|
return optDepth.x * _AirSeaLevelExtinction.xyz
|
||
|
+ optDepth.y * _AerosolSeaLevelExtinction
|
||
|
+ optDepth.z * _OzoneSeaLevelExtinction.xyz;
|
||
|
}
|
||
|
|
||
|
float3 ComputeAtmosphericOpticalDepth1(float r, float cosTheta)
|
||
|
{
|
||
|
float cosHor = ComputeCosineOfHorizonAngle(r);
|
||
|
|
||
|
return ComputeAtmosphericOpticalDepth(r, cosTheta, cosTheta >= cosHor);
|
||
|
}
|
||
|
|
||
|
// Assumes the ray starts and ends inside atmosphere
|
||
|
// O is in planet space
|
||
|
float3 ComputeAtmosphericOpticalDepth(float3 O, float3 V, float distAlongRay)
|
||
|
{
|
||
|
const float R = _PlanetaryRadius;
|
||
|
const float2 n = float2(_AirDensityFalloff, _AerosolDensityFalloff);
|
||
|
const float2 H = float2(_AirScaleHeight, _AerosolScaleHeight);
|
||
|
|
||
|
const float tFrag = distAlongRay;
|
||
|
|
||
|
float3 N = normalize(O);
|
||
|
float r = length(O);
|
||
|
|
||
|
float NdotV = dot(N, V);
|
||
|
float cosChi = -NdotV;
|
||
|
|
||
|
float2 Z = R * n;
|
||
|
float r0 = r, cosChi0 = cosChi;
|
||
|
|
||
|
float r1 = 0, cosChi1 = 0;
|
||
|
float3 N1 = 0;
|
||
|
|
||
|
{
|
||
|
float3 P1 = O + tFrag * -V;
|
||
|
|
||
|
r1 = length(P1);
|
||
|
N1 = P1 * rcp(r1);
|
||
|
cosChi1 = dot(P1, -V) * rcp(r1);
|
||
|
|
||
|
// Potential swap.
|
||
|
cosChi0 = (cosChi1 >= 0) ? cosChi0 : -cosChi0;
|
||
|
}
|
||
|
|
||
|
float2 ch0, ch1 = 0;
|
||
|
|
||
|
{
|
||
|
float2 z0 = r0 * n;
|
||
|
|
||
|
ch0.x = RescaledChapmanFunction(z0.x, Z.x, cosChi0);
|
||
|
ch0.y = RescaledChapmanFunction(z0.y, Z.y, cosChi0);
|
||
|
}
|
||
|
|
||
|
{
|
||
|
float2 z1 = r1 * n;
|
||
|
|
||
|
ch1.x = ChapmanUpperApprox(z1.x, abs(cosChi1)) * exp(Z.x - z1.x);
|
||
|
ch1.y = ChapmanUpperApprox(z1.y, abs(cosChi1)) * exp(Z.y - z1.y);
|
||
|
}
|
||
|
|
||
|
// We may have swapped X and Y.
|
||
|
float2 ch = abs(ch0 - ch1);
|
||
|
float3 optDepth = float3(ch * H, ComputeOzoneOpticalDepth(r, cosChi, distAlongRay));
|
||
|
|
||
|
return optDepth.x * _AirSeaLevelExtinction.xyz
|
||
|
+ optDepth.y * _AerosolSeaLevelExtinction
|
||
|
+ optDepth.z * _OzoneSeaLevelExtinction.xyz;
|
||
|
}
|
||
|
|
||
|
// Evaluates transmittance to sun from a point at altitude r
|
||
|
// cosTheta is the zenith angle
|
||
|
float3 EvaluateSunColorAttenuation(float cosTheta, float r)
|
||
|
{
|
||
|
float cosHoriz = ComputeCosineOfHorizonAngle(r);
|
||
|
|
||
|
if (cosTheta >= cosHoriz) // Above horizon
|
||
|
{
|
||
|
float3 opticalDepth = ComputeAtmosphericOpticalDepth(r, cosTheta, true);
|
||
|
return TransmittanceFromOpticalDepth(opticalDepth);
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
return 0;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// This function evaluates the sun color attenuation from the physically based sky
|
||
|
float3 EvaluateSunColorAttenuation(float3 positionPS, float3 sunDirection, bool estimatePenumbra = false)
|
||
|
{
|
||
|
float r = length(positionPS);
|
||
|
float cosTheta = dot(positionPS, sunDirection) * rcp(r); // Normalize
|
||
|
|
||
|
// Point can be below horizon due to precision issues
|
||
|
r = max(r, _PlanetaryRadius);
|
||
|
float cosHoriz = ComputeCosineOfHorizonAngle(r);
|
||
|
|
||
|
if (cosTheta >= cosHoriz) // Above horizon
|
||
|
{
|
||
|
float3 oDepth = ComputeAtmosphericOpticalDepth(r, cosTheta, true);
|
||
|
float3 opacity = 1 - TransmittanceFromOpticalDepth(oDepth);
|
||
|
float penumbra = saturate((cosTheta - cosHoriz) / 0.0019f); // very scientific value
|
||
|
float3 attenuation = 1 - (Desaturate(opacity, _AlphaSaturation) * _AlphaMultiplier);
|
||
|
return estimatePenumbra ? attenuation * penumbra : attenuation;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
return 0;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Map: [cos(120 deg), 1] -> [0, 1].
|
||
|
// Allocate more samples around (Pi/2).
|
||
|
float MapCosineOfZenithAngle(float NdotL)
|
||
|
{
|
||
|
float x = max(NdotL, -0.5);
|
||
|
float s = CopySign(sqrt(abs(x)), x); // [-0.70710678, 1]
|
||
|
return saturate(0.585786 * s + 0.414214);
|
||
|
}
|
||
|
|
||
|
// Map: [0, 1] -> [-0.1975, 1].
|
||
|
float UnmapCosineOfZenithAngle(float u)
|
||
|
{
|
||
|
float s = 1.70711 * u - 0.707107;
|
||
|
return CopySign(s * s, s);
|
||
|
}
|
||
|
|
||
|
float3 SampleGroundIrradianceTexture(float NdotL)
|
||
|
{
|
||
|
float2 uv = float2(MapCosineOfZenithAngle(NdotL), 0);
|
||
|
|
||
|
return SAMPLE_TEXTURE2D_LOD(_GroundIrradianceTexture, s_linear_clamp_sampler, uv, 0).rgb;
|
||
|
}
|
||
|
|
||
|
struct TexCoord4D
|
||
|
{
|
||
|
float u, v, w0, w1, a;
|
||
|
};
|
||
|
|
||
|
TexCoord4D ConvertPositionAndOrientationToTexCoords(float height, float NdotV, float NdotL, float phiL)
|
||
|
{
|
||
|
const uint zTexSize = PBRSKYCONFIG_IN_SCATTERED_RADIANCE_TABLE_SIZE_Z;
|
||
|
const uint zTexCnt = PBRSKYCONFIG_IN_SCATTERED_RADIANCE_TABLE_SIZE_W;
|
||
|
|
||
|
float cosChi = -NdotV;
|
||
|
|
||
|
float u = MapAerialPerspective(cosChi, height, rcp(PBRSKYCONFIG_IN_SCATTERED_RADIANCE_TABLE_SIZE_X)).x;
|
||
|
float v = MapAerialPerspective(cosChi, height, rcp(PBRSKYCONFIG_IN_SCATTERED_RADIANCE_TABLE_SIZE_X)).y;
|
||
|
float w = (0.5 + (INV_PI * phiL) * (zTexSize - 1)) * rcp(zTexSize); // [0.5 / zts, 1 - 0.5 / zts]
|
||
|
float k = MapCosineOfZenithAngle(NdotL) * (zTexCnt - 1); // [0, ztc - 1]
|
||
|
|
||
|
TexCoord4D texCoord;
|
||
|
|
||
|
texCoord.u = u;
|
||
|
texCoord.v = v;
|
||
|
|
||
|
// Emulate a 4D texture with a "deep" 3D texture.
|
||
|
texCoord.w0 = (floor(k) + w) * rcp(zTexCnt);
|
||
|
texCoord.w1 = (ceil(k) + w) * rcp(zTexCnt);
|
||
|
texCoord.a = frac(k);
|
||
|
|
||
|
return texCoord;
|
||
|
}
|
||
|
|
||
|
float3 ExpLerp(float3 A, float3 B, float t, float x, float y)
|
||
|
{
|
||
|
// Remap t: (exp(10 k t) - 1) / (exp(10 k) - 1) = exp(x t) y - y.
|
||
|
t = exp(x * t) * y - y;
|
||
|
// Perform linear interpolation using the new value of t.
|
||
|
return lerp(A, B, t);
|
||
|
}
|
||
|
|
||
|
void AtmosphereArtisticOverride(float cosHor, float cosChi, inout float3 skyColor, inout float3 skyOpacity, bool precomputedColorDesaturate = false)
|
||
|
{
|
||
|
if (!precomputedColorDesaturate)
|
||
|
skyColor = Desaturate(skyColor, _ColorSaturation);
|
||
|
skyOpacity = Desaturate(skyOpacity, _AlphaSaturation) * _AlphaMultiplier;
|
||
|
|
||
|
float horAngle = acos(cosHor);
|
||
|
float chiAngle = acos(cosChi);
|
||
|
|
||
|
// [start, end] -> [0, 1] : (x - start) / (end - start) = x * rcpLength - (start * rcpLength)
|
||
|
// TEMPLATE_3_REAL(Remap01, x, rcpLength, startTimesRcpLength, return saturate(x * rcpLength - startTimesRcpLength))
|
||
|
float start = horAngle;
|
||
|
float end = 0;
|
||
|
float rcpLen = rcp(end - start);
|
||
|
float nrmAngle = Remap01(chiAngle, rcpLen, start * rcpLen);
|
||
|
// float angle = saturate((0.5 * PI) - acos(cosChi) * rcp(0.5 * PI));
|
||
|
|
||
|
skyColor *= ExpLerp(_HorizonTint.rgb, _ZenithTint.rgb, nrmAngle, _HorizonZenithShiftPower, _HorizonZenithShiftScale);
|
||
|
}
|
||
|
|
||
|
#endif // UNITY_PHYSICALLY_BASED_SKY_COMMON_INCLUDED
|