574 lines
23 KiB
C#
574 lines
23 KiB
C#
|
using System;
|
||
|
using System.Collections.Generic;
|
||
|
using Unity.Collections;
|
||
|
using Unity.Mathematics;
|
||
|
using UnityEngine.U2D;
|
||
|
|
||
|
namespace UnityEngine.Rendering.Universal
|
||
|
{
|
||
|
// Per Light parameters to batch.
|
||
|
struct PerLight2D
|
||
|
{
|
||
|
internal float4x4 InvMatrix;
|
||
|
internal float4 Color;
|
||
|
internal float4 Position;
|
||
|
internal float FalloffIntensity;
|
||
|
internal float FalloffDistance;
|
||
|
internal float OuterAngle;
|
||
|
internal float InnerAngle;
|
||
|
internal float InnerRadiusMult;
|
||
|
internal float VolumeOpacity;
|
||
|
internal float ShadowIntensity;
|
||
|
internal int LightType;
|
||
|
};
|
||
|
|
||
|
internal static class LightUtility
|
||
|
{
|
||
|
public static bool CheckForChange(Light2D.LightType a, ref Light2D.LightType b)
|
||
|
{
|
||
|
var changed = a != b;
|
||
|
b = a;
|
||
|
return changed;
|
||
|
}
|
||
|
|
||
|
public static bool CheckForChange(Component a, ref Component b)
|
||
|
{
|
||
|
var changed = a != b;
|
||
|
b = a;
|
||
|
return changed;
|
||
|
}
|
||
|
|
||
|
public static bool CheckForChange(int a, ref int b)
|
||
|
{
|
||
|
var changed = a != b;
|
||
|
b = a;
|
||
|
return changed;
|
||
|
}
|
||
|
|
||
|
public static bool CheckForChange(float a, ref float b)
|
||
|
{
|
||
|
var changed = a != b;
|
||
|
b = a;
|
||
|
return changed;
|
||
|
}
|
||
|
|
||
|
public static bool CheckForChange(bool a, ref bool b)
|
||
|
{
|
||
|
var changed = a != b;
|
||
|
b = a;
|
||
|
return changed;
|
||
|
}
|
||
|
|
||
|
private enum PivotType
|
||
|
{
|
||
|
PivotBase,
|
||
|
PivotCurve,
|
||
|
PivotIntersect,
|
||
|
PivotSkip,
|
||
|
PivotClip
|
||
|
};
|
||
|
|
||
|
[Serializable]
|
||
|
internal struct LightMeshVertex
|
||
|
{
|
||
|
public Vector3 position;
|
||
|
public Color color;
|
||
|
public Vector2 uv;
|
||
|
|
||
|
public static readonly VertexAttributeDescriptor[] VertexLayout = new[]
|
||
|
{
|
||
|
new VertexAttributeDescriptor(VertexAttribute.Position, VertexAttributeFormat.Float32, 3),
|
||
|
new VertexAttributeDescriptor(VertexAttribute.Color, VertexAttributeFormat.Float32, 4),
|
||
|
new VertexAttributeDescriptor(VertexAttribute.TexCoord0, VertexAttributeFormat.Float32, 2),
|
||
|
};
|
||
|
}
|
||
|
|
||
|
static bool TestPivot(List<IntPoint> path, int activePoint, long lastPoint)
|
||
|
{
|
||
|
for (int i = activePoint; i < path.Count; ++i)
|
||
|
{
|
||
|
if (path[i].N > lastPoint)
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
return (path[activePoint].N == -1);
|
||
|
}
|
||
|
|
||
|
// Degenerate Pivots at the End Points.
|
||
|
static List<IntPoint> DegeneratePivots(List<IntPoint> path, List<IntPoint> inPath, ref int interiorStart)
|
||
|
{
|
||
|
List<IntPoint> degenerate = new List<IntPoint>();
|
||
|
var minN = path[0].N;
|
||
|
var maxN = path[0].N;
|
||
|
for (int i = 1; i < path.Count; ++i)
|
||
|
{
|
||
|
if (path[i].N != -1)
|
||
|
{
|
||
|
minN = Math.Min(minN, path[i].N);
|
||
|
maxN = Math.Max(maxN, path[i].N);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
for (long i = 0; i < minN; ++i)
|
||
|
{
|
||
|
IntPoint ins = path[(int)minN];
|
||
|
ins.N = i;
|
||
|
degenerate.Add(ins);
|
||
|
}
|
||
|
degenerate.AddRange(path.GetRange(0, path.Count));
|
||
|
interiorStart = degenerate.Count;
|
||
|
for (long i = maxN + 1; i < inPath.Count; ++i)
|
||
|
{
|
||
|
IntPoint ins = inPath[(int)i];
|
||
|
ins.N = i;
|
||
|
degenerate.Add(ins);
|
||
|
}
|
||
|
return degenerate;
|
||
|
}
|
||
|
|
||
|
// Ensure that we get a valid path from 0.
|
||
|
static List<IntPoint> SortPivots(List<IntPoint> outPath, List<IntPoint> inPath)
|
||
|
{
|
||
|
List<IntPoint> sorted = new List<IntPoint>();
|
||
|
var min = outPath[0].N;
|
||
|
var max = outPath[0].N;
|
||
|
var minIndex = 0;
|
||
|
bool newMin = true;
|
||
|
for (int i = 1; i < outPath.Count; ++i)
|
||
|
{
|
||
|
if (max > outPath[i].N && newMin && outPath[i].N != -1)
|
||
|
{
|
||
|
min = max = outPath[i].N;
|
||
|
minIndex = i;
|
||
|
newMin = false;
|
||
|
}
|
||
|
else if (outPath[i].N >= max)
|
||
|
{
|
||
|
max = outPath[i].N;
|
||
|
newMin = true;
|
||
|
}
|
||
|
}
|
||
|
sorted.AddRange(outPath.GetRange(minIndex, (outPath.Count - minIndex)));
|
||
|
sorted.AddRange(outPath.GetRange(0, minIndex));
|
||
|
return sorted;
|
||
|
}
|
||
|
|
||
|
// Ensure that all points eliminated due to overlaps and intersections are accounted for Tessellation.
|
||
|
static List<IntPoint> FixPivots(List<IntPoint> outPath, List<IntPoint> inPath, ref int interiorStart)
|
||
|
{
|
||
|
var path = SortPivots(outPath, inPath);
|
||
|
long pivotPoint = path[0].N;
|
||
|
|
||
|
// Connect Points for Overlaps.
|
||
|
for (int i = 1; i < path.Count; ++i)
|
||
|
{
|
||
|
var j = (i == path.Count - 1) ? 0 : (i + 1);
|
||
|
var prev = path[i - 1];
|
||
|
var curr = path[i];
|
||
|
var next = path[j];
|
||
|
|
||
|
if (prev.N > curr.N)
|
||
|
{
|
||
|
var incr = TestPivot(path, i, pivotPoint);
|
||
|
if (incr)
|
||
|
{
|
||
|
if (prev.N == next.N)
|
||
|
curr.N = prev.N;
|
||
|
else
|
||
|
curr.N = (pivotPoint + 1) < inPath.Count ? (pivotPoint + 1) : 0;
|
||
|
curr.D = 3;
|
||
|
path[i] = curr;
|
||
|
}
|
||
|
}
|
||
|
pivotPoint = path[i].N;
|
||
|
}
|
||
|
|
||
|
// Insert Skipped Points.
|
||
|
for (int i = 1; i < path.Count - 1;)
|
||
|
{
|
||
|
var prev = path[i - 1];
|
||
|
var curr = path[i];
|
||
|
var next = path[i + 1];
|
||
|
|
||
|
if (curr.N - prev.N > 1)
|
||
|
{
|
||
|
if (curr.N == next.N)
|
||
|
{
|
||
|
IntPoint ins = curr;
|
||
|
ins.N = (ins.N - 1);
|
||
|
path[i] = ins;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
IntPoint ins = curr;
|
||
|
ins.N = (ins.N - 1);
|
||
|
path.Insert(i, ins);
|
||
|
}
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
i++;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
path = DegeneratePivots(path, inPath, ref interiorStart);
|
||
|
return path;
|
||
|
}
|
||
|
|
||
|
// Rough shape only used in Inspector for quick preview.
|
||
|
internal static List<Vector2> GetOutlinePath(Vector3[] shapePath, float offsetDistance)
|
||
|
{
|
||
|
const float kClipperScale = 10000.0f;
|
||
|
List<IntPoint> path = new List<IntPoint>();
|
||
|
List<Vector2> output = new List<Vector2>();
|
||
|
for (var i = 0; i < shapePath.Length; ++i)
|
||
|
{
|
||
|
var newPoint = new Vector2(shapePath[i].x, shapePath[i].y) * kClipperScale;
|
||
|
path.Add(new IntPoint((System.Int64)(newPoint.x), (System.Int64)(newPoint.y)));
|
||
|
}
|
||
|
List<List<IntPoint>> solution = new List<List<IntPoint>>();
|
||
|
ClipperOffset clipOffset = new ClipperOffset(24.0f);
|
||
|
clipOffset.AddPath(path, JoinTypes.jtRound, EndTypes.etClosedPolygon);
|
||
|
clipOffset.Execute(ref solution, kClipperScale * offsetDistance, path.Count);
|
||
|
if (solution.Count > 0)
|
||
|
{
|
||
|
int interiorStart = 0;
|
||
|
var outPath = solution[0];
|
||
|
outPath = FixPivots(outPath, path, ref interiorStart);
|
||
|
|
||
|
for (int i = 0; i < outPath.Count; ++i)
|
||
|
output.Add(new Vector2(outPath[i].X / kClipperScale, outPath[i].Y / kClipperScale));
|
||
|
}
|
||
|
return output;
|
||
|
}
|
||
|
|
||
|
static void TransferToMesh(NativeArray<LightMeshVertex> vertices, int vertexCount, NativeArray<ushort> indices,
|
||
|
int indexCount, Light2D light)
|
||
|
{
|
||
|
var mesh = light.lightMesh;
|
||
|
mesh.SetVertexBufferParams(vertexCount, LightMeshVertex.VertexLayout);
|
||
|
mesh.SetVertexBufferData(vertices, 0, 0, vertexCount);
|
||
|
mesh.SetIndices(indices, 0, indexCount, MeshTopology.Triangles, 0, true);
|
||
|
|
||
|
light.vertices = new LightMeshVertex[vertexCount];
|
||
|
NativeArray<LightMeshVertex>.Copy(vertices, light.vertices, vertexCount);
|
||
|
light.indices = new ushort[indexCount];
|
||
|
NativeArray<ushort>.Copy(indices, light.indices, indexCount);
|
||
|
}
|
||
|
|
||
|
public static Bounds GenerateShapeMesh(Light2D light, Vector3[] shapePath, float falloffDistance, float batchColor)
|
||
|
{
|
||
|
const float kClipperScale = 10000.0f;
|
||
|
|
||
|
var restoreState = Random.state;
|
||
|
Random.InitState(123456); // for deterministic output
|
||
|
|
||
|
// todo Revisit this while we do Batching.
|
||
|
var meshInteriorColor = new Color(0, 0, batchColor, 1.0f);
|
||
|
var meshExteriorColor = new Color(0, 0, batchColor, 0.0f);
|
||
|
|
||
|
// Create shape geometry based on edges
|
||
|
int inEdgeCount = shapePath.Length;
|
||
|
NativeArray<int2> tessInEdges = new NativeArray<int2>(inEdgeCount, Allocator.Temp);
|
||
|
NativeArray<float2> tessInVertices = new NativeArray<float2>(inEdgeCount, Allocator.Temp);
|
||
|
|
||
|
for (int i = 0; i < inEdgeCount; ++i)
|
||
|
{
|
||
|
int edgeEnd = i + 1;
|
||
|
if (edgeEnd == inEdgeCount)
|
||
|
edgeEnd = 0;
|
||
|
|
||
|
int2 edge = new int2(i, edgeEnd);
|
||
|
tessInEdges[i] = edge;
|
||
|
|
||
|
int index = edge.x;
|
||
|
tessInVertices[index] = new float2(shapePath[index].x, shapePath[index].y);
|
||
|
}
|
||
|
|
||
|
// Do tessellation
|
||
|
NativeArray<int> tessOutIndices = new NativeArray<int>(tessInEdges.Length * 8, Allocator.Temp);
|
||
|
NativeArray<float2> tessOutVertices = new NativeArray<float2>(tessInEdges.Length * 8, Allocator.Temp);
|
||
|
NativeArray<int2> tessOutEdges = new NativeArray<int2>(tessInEdges.Length * 8, Allocator.Temp);
|
||
|
int tessOutVertexCount = 0;
|
||
|
int tessOutIndexCount = 0;
|
||
|
int tessOutEdgeCount = 0;
|
||
|
|
||
|
UTess.ModuleHandle.Tessellate(Allocator.Temp, tessInVertices, tessInEdges, ref tessOutVertices, ref tessOutVertexCount, ref tessOutIndices, ref tessOutIndexCount, ref tessOutEdges, ref tessOutEdgeCount);
|
||
|
|
||
|
// Create falloff geometry with random noise to account for collinear points
|
||
|
var inputPointCount = shapePath.Length;
|
||
|
List<IntPoint> path = new List<IntPoint>();
|
||
|
for (var i = 0; i < inputPointCount; ++i)
|
||
|
{
|
||
|
var nx = (System.Int64)((double)shapePath[i].x * (double)kClipperScale);
|
||
|
var ny = (System.Int64)((double)shapePath[i].y * (double)kClipperScale);
|
||
|
var addPoint = new IntPoint(nx + Random.Range(-10, 10), ny + Random.Range(-10, 10));
|
||
|
addPoint.N = i; addPoint.D = -1;
|
||
|
path.Add(addPoint);
|
||
|
}
|
||
|
var lastPointIndex = inputPointCount - 1;
|
||
|
var interiorStartPoint = 0;
|
||
|
|
||
|
// Generate Bevels.
|
||
|
List<List<IntPoint>> solution = new List<List<IntPoint>>();
|
||
|
ClipperOffset clipOffset = new ClipperOffset(24.0f);
|
||
|
clipOffset.AddPath(path, JoinTypes.jtRound, EndTypes.etClosedPolygon);
|
||
|
clipOffset.Execute(ref solution, kClipperScale * falloffDistance, path.Count);
|
||
|
|
||
|
if (solution.Count > 0)
|
||
|
{
|
||
|
// Fix path for Pivots.
|
||
|
var outPath = solution[0];
|
||
|
var minPath = (long)inputPointCount;
|
||
|
for (int i = 0; i < outPath.Count; ++i)
|
||
|
minPath = (outPath[i].N != -1) ? Math.Min(minPath, outPath[i].N) : minPath;
|
||
|
var containsStart = minPath == 0;
|
||
|
outPath = FixPivots(outPath, path, ref interiorStartPoint);
|
||
|
|
||
|
// Size accounts for light mesh + falloff geometry(outer + inner)
|
||
|
int totalOutVertices = tessOutVertexCount + outPath.Count + inputPointCount;
|
||
|
int totalOutIndices = tessOutIndexCount + (outPath.Count * 6) + 6;
|
||
|
var outVertices = new NativeArray<LightMeshVertex>(totalOutVertices, Allocator.Temp);
|
||
|
var outIndices = new NativeArray<ushort>(totalOutIndices, Allocator.Temp);
|
||
|
|
||
|
for (int i = 0; i < tessOutIndexCount; ++i)
|
||
|
outIndices[i] = (ushort)tessOutIndices[i];
|
||
|
|
||
|
for (int i = 0; i < tessOutVertexCount; ++i)
|
||
|
{
|
||
|
outVertices[i] = new LightMeshVertex()
|
||
|
{
|
||
|
position = new float3(tessOutVertices[i].x, tessOutVertices[i].y, 0),
|
||
|
color = meshInteriorColor
|
||
|
};
|
||
|
}
|
||
|
|
||
|
var vcount = tessOutVertexCount;
|
||
|
var icount = tessOutIndexCount;
|
||
|
var innerIndices = new ushort[inputPointCount];
|
||
|
|
||
|
// Inner Vertices. (These may or may not be part of the created path. Beware!!)
|
||
|
for (int i = 0; i < inputPointCount; ++i)
|
||
|
{
|
||
|
outVertices[vcount++] = new LightMeshVertex()
|
||
|
{
|
||
|
position = new float3(shapePath[i].x, shapePath[i].y, 0),
|
||
|
color = meshInteriorColor
|
||
|
};
|
||
|
innerIndices[i] = (ushort)(vcount - 1);
|
||
|
}
|
||
|
|
||
|
var saveIndex = (ushort)vcount;
|
||
|
var pathStart = saveIndex;
|
||
|
var prevIndex = outPath[0].N == -1 ? 0 : outPath[0].N;
|
||
|
|
||
|
// Outer Vertices
|
||
|
for (int i = 0; i < outPath.Count; ++i)
|
||
|
{
|
||
|
var curr = outPath[i];
|
||
|
var currPoint = new float2(curr.X / kClipperScale, curr.Y / kClipperScale);
|
||
|
var currIndex = curr.N == -1 ? 0 : curr.N;
|
||
|
|
||
|
outVertices[vcount++] = new LightMeshVertex()
|
||
|
{
|
||
|
position = new float3(currPoint.x, currPoint.y, 0),
|
||
|
color = (interiorStartPoint > i) ? meshExteriorColor : meshInteriorColor
|
||
|
};
|
||
|
|
||
|
if (prevIndex != currIndex)
|
||
|
{
|
||
|
outIndices[icount++] = innerIndices[prevIndex];
|
||
|
outIndices[icount++] = innerIndices[currIndex];
|
||
|
outIndices[icount++] = (ushort)(vcount - 1);
|
||
|
}
|
||
|
|
||
|
outIndices[icount++] = innerIndices[prevIndex];
|
||
|
outIndices[icount++] = saveIndex;
|
||
|
outIndices[icount++] = saveIndex = (ushort)(vcount - 1);
|
||
|
prevIndex = currIndex;
|
||
|
}
|
||
|
|
||
|
// Close the Loop.
|
||
|
{
|
||
|
outIndices[icount++] = pathStart;
|
||
|
outIndices[icount++] = innerIndices[minPath];
|
||
|
outIndices[icount++] = containsStart ? innerIndices[lastPointIndex] : saveIndex;
|
||
|
|
||
|
outIndices[icount++] = containsStart ? pathStart : saveIndex;
|
||
|
outIndices[icount++] = containsStart ? saveIndex : innerIndices[minPath];
|
||
|
|
||
|
// Last Triangle. todo: Remove Clipper Usage and use SpriteShape Geometry Generator for falloff potentially.
|
||
|
if (containsStart)
|
||
|
{
|
||
|
var kTolerance = 0.001f;
|
||
|
var connectingPoint = innerIndices[lastPointIndex];
|
||
|
// End point detection is tricky and depends on convexity of shape. Simple test is to just check the vertices and detect.
|
||
|
var testA = MathF.Abs(outVertices[connectingPoint].position.x - outVertices[outIndices[icount - 1]].position.x) > kTolerance || MathF.Abs(outVertices[connectingPoint].position.y - outVertices[outIndices[icount - 1]].position.y) > kTolerance;
|
||
|
var testB = MathF.Abs(outVertices[connectingPoint].position.x - outVertices[outIndices[icount - 2]].position.x) > kTolerance || MathF.Abs(outVertices[connectingPoint].position.y - outVertices[outIndices[icount - 2]].position.y) > kTolerance;
|
||
|
if (!testA || !testB)
|
||
|
connectingPoint = (ushort)(interiorStartPoint + inputPointCount + tessOutVertexCount - 1);
|
||
|
outIndices[icount++] = connectingPoint;
|
||
|
}
|
||
|
else
|
||
|
outIndices[icount++] = innerIndices[minPath - 1];
|
||
|
}
|
||
|
|
||
|
TransferToMesh(outVertices, vcount, outIndices, icount, light);
|
||
|
}
|
||
|
|
||
|
Random.state = restoreState;
|
||
|
return light.lightMesh.GetSubMesh(0).bounds;
|
||
|
}
|
||
|
|
||
|
public static Bounds GenerateParametricMesh(Light2D light, float radius, float falloffDistance, float angle, int sides, float batchColor)
|
||
|
{
|
||
|
var angleOffset = Mathf.PI / 2.0f + Mathf.Deg2Rad * angle;
|
||
|
if (sides < 3)
|
||
|
{
|
||
|
radius = 0.70710678118654752440084436210485f * radius;
|
||
|
sides = 4;
|
||
|
}
|
||
|
|
||
|
if (sides == 4)
|
||
|
{
|
||
|
angleOffset = Mathf.PI / 4.0f + Mathf.Deg2Rad * angle;
|
||
|
}
|
||
|
|
||
|
var vertexCount = 1 + 2 * sides;
|
||
|
var indexCount = 3 * 3 * sides;
|
||
|
var vertices = new NativeArray<LightMeshVertex>(vertexCount, Allocator.Temp);
|
||
|
var triangles = new NativeArray<ushort>(indexCount, Allocator.Temp);
|
||
|
var centerIndex = (ushort)(2 * sides);
|
||
|
var mesh = light.lightMesh;
|
||
|
|
||
|
// Only Alpha value in Color channel is ever used. May remove it or keep it for batching params in the future.
|
||
|
var color = new Color(0, 0, batchColor, 1.0f);
|
||
|
vertices[centerIndex] = new LightMeshVertex
|
||
|
{
|
||
|
position = float3.zero,
|
||
|
color = color
|
||
|
};
|
||
|
|
||
|
var radiansPerSide = 2 * Mathf.PI / sides;
|
||
|
var min = new float3(float.MaxValue, float.MaxValue, 0);
|
||
|
var max = new float3(float.MinValue, float.MinValue, 0);
|
||
|
|
||
|
for (var i = 0; i < sides; i++)
|
||
|
{
|
||
|
var endAngle = (i + 1) * radiansPerSide;
|
||
|
var extrudeDir = new float3(math.cos(endAngle + angleOffset), math.sin(endAngle + angleOffset), 0);
|
||
|
var endPoint = radius * extrudeDir;
|
||
|
|
||
|
var vertexIndex = (2 * i + 2) % (2 * sides);
|
||
|
vertices[vertexIndex] = new LightMeshVertex
|
||
|
{
|
||
|
position = endPoint,
|
||
|
color = new Color(extrudeDir.x, extrudeDir.y, batchColor, 0)
|
||
|
};
|
||
|
vertices[vertexIndex + 1] = new LightMeshVertex
|
||
|
{
|
||
|
position = endPoint,
|
||
|
color = color
|
||
|
};
|
||
|
|
||
|
// Triangle 1 (Tip)
|
||
|
var triangleIndex = 9 * i;
|
||
|
triangles[triangleIndex] = (ushort)(vertexIndex + 1);
|
||
|
triangles[triangleIndex + 1] = (ushort)(2 * i + 1);
|
||
|
triangles[triangleIndex + 2] = centerIndex;
|
||
|
|
||
|
// Triangle 2 (Upper Top Left)
|
||
|
triangles[triangleIndex + 3] = (ushort)(vertexIndex);
|
||
|
triangles[triangleIndex + 4] = (ushort)(2 * i);
|
||
|
triangles[triangleIndex + 5] = (ushort)(2 * i + 1);
|
||
|
|
||
|
// Triangle 2 (Bottom Top Left)
|
||
|
triangles[triangleIndex + 6] = (ushort)(vertexIndex + 1);
|
||
|
triangles[triangleIndex + 7] = (ushort)(vertexIndex);
|
||
|
triangles[triangleIndex + 8] = (ushort)(2 * i + 1);
|
||
|
|
||
|
min = math.min(min, endPoint + extrudeDir * falloffDistance);
|
||
|
max = math.max(max, endPoint + extrudeDir * falloffDistance);
|
||
|
}
|
||
|
|
||
|
mesh.SetVertexBufferParams(vertexCount, LightMeshVertex.VertexLayout);
|
||
|
mesh.SetVertexBufferData(vertices, 0, 0, vertexCount);
|
||
|
mesh.SetIndices(triangles, MeshTopology.Triangles, 0, false);
|
||
|
|
||
|
light.vertices = new LightMeshVertex[vertexCount];
|
||
|
NativeArray<LightMeshVertex>.Copy(vertices, light.vertices, vertexCount);
|
||
|
light.indices = new ushort[indexCount];
|
||
|
NativeArray<ushort>.Copy(triangles, light.indices, indexCount);
|
||
|
|
||
|
return new Bounds
|
||
|
{
|
||
|
min = min,
|
||
|
max = max
|
||
|
};
|
||
|
}
|
||
|
|
||
|
public static Bounds GenerateSpriteMesh(Light2D light, Sprite sprite, float batchColor)
|
||
|
{
|
||
|
var mesh = light.lightMesh;
|
||
|
|
||
|
if (sprite == null)
|
||
|
{
|
||
|
mesh.Clear();
|
||
|
return new Bounds(Vector3.zero, Vector3.zero);
|
||
|
}
|
||
|
|
||
|
// this needs to be called before getting UV at the line below.
|
||
|
// Venky fixed it, enroute to trunk
|
||
|
var uvs = sprite.uv;
|
||
|
|
||
|
var srcVertices = sprite.GetVertexAttribute<Vector3>(VertexAttribute.Position);
|
||
|
var srcUVs = sprite.GetVertexAttribute<Vector2>(VertexAttribute.TexCoord0);
|
||
|
var srcIndices = sprite.GetIndices();
|
||
|
|
||
|
var center = 0.5f * (sprite.bounds.min + sprite.bounds.max);
|
||
|
var vertices = new NativeArray<LightMeshVertex>(srcIndices.Length, Allocator.Temp);
|
||
|
var color = new Color(0, 0, batchColor, 1);
|
||
|
|
||
|
for (var i = 0; i < srcVertices.Length; i++)
|
||
|
{
|
||
|
vertices[i] = new LightMeshVertex
|
||
|
{
|
||
|
position = new Vector3(srcVertices[i].x, srcVertices[i].y, 0),
|
||
|
color = color,
|
||
|
uv = srcUVs[i]
|
||
|
};
|
||
|
}
|
||
|
mesh.SetVertexBufferParams(vertices.Length, LightMeshVertex.VertexLayout);
|
||
|
mesh.SetVertexBufferData(vertices, 0, 0, vertices.Length);
|
||
|
mesh.SetIndices(srcIndices, MeshTopology.Triangles, 0, true);
|
||
|
|
||
|
light.vertices = new LightMeshVertex[vertices.Length];
|
||
|
NativeArray<LightMeshVertex>.Copy(vertices, light.vertices, vertices.Length);
|
||
|
light.indices = new ushort[srcIndices.Length];
|
||
|
NativeArray<ushort>.Copy(srcIndices, light.indices, srcIndices.Length);
|
||
|
|
||
|
return mesh.GetSubMesh(0).bounds;
|
||
|
}
|
||
|
|
||
|
public static int GetShapePathHash(Vector3[] path)
|
||
|
{
|
||
|
unchecked
|
||
|
{
|
||
|
int hashCode = (int)2166136261;
|
||
|
|
||
|
if (path != null)
|
||
|
{
|
||
|
foreach (var point in path)
|
||
|
hashCode = hashCode * 16777619 ^ point.GetHashCode();
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
hashCode = 0;
|
||
|
}
|
||
|
|
||
|
return hashCode;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|