542 lines
18 KiB
HLSL
542 lines
18 KiB
HLSL
#ifndef UNITY_SHADER_VARIABLES_FUNCTIONS_INCLUDED
|
|
#define UNITY_SHADER_VARIABLES_FUNCTIONS_INCLUDED
|
|
|
|
#include "Packages/com.unity.render-pipelines.universal/ShaderLibrary/ShaderVariablesFunctions.deprecated.hlsl"
|
|
#include "Packages/com.unity.render-pipelines.universal/ShaderLibrary/Debug/DebuggingCommon.hlsl"
|
|
|
|
VertexPositionInputs GetVertexPositionInputs(float3 positionOS)
|
|
{
|
|
VertexPositionInputs input;
|
|
input.positionWS = TransformObjectToWorld(positionOS);
|
|
input.positionVS = TransformWorldToView(input.positionWS);
|
|
input.positionCS = TransformWorldToHClip(input.positionWS);
|
|
|
|
float4 ndc = input.positionCS * 0.5f;
|
|
input.positionNDC.xy = float2(ndc.x, ndc.y * _ProjectionParams.x) + ndc.w;
|
|
input.positionNDC.zw = input.positionCS.zw;
|
|
|
|
return input;
|
|
}
|
|
|
|
VertexNormalInputs GetVertexNormalInputs(float3 normalOS)
|
|
{
|
|
VertexNormalInputs tbn;
|
|
tbn.tangentWS = real3(1.0, 0.0, 0.0);
|
|
tbn.bitangentWS = real3(0.0, 1.0, 0.0);
|
|
tbn.normalWS = TransformObjectToWorldNormal(normalOS);
|
|
return tbn;
|
|
}
|
|
|
|
VertexNormalInputs GetVertexNormalInputs(float3 normalOS, float4 tangentOS)
|
|
{
|
|
VertexNormalInputs tbn;
|
|
|
|
// mikkts space compliant. only normalize when extracting normal at frag.
|
|
real sign = real(tangentOS.w) * GetOddNegativeScale();
|
|
tbn.normalWS = TransformObjectToWorldNormal(normalOS);
|
|
tbn.tangentWS = real3(TransformObjectToWorldDir(tangentOS.xyz));
|
|
tbn.bitangentWS = real3(cross(tbn.normalWS, float3(tbn.tangentWS))) * sign;
|
|
return tbn;
|
|
}
|
|
|
|
float4 GetScaledScreenParams()
|
|
{
|
|
return _ScaledScreenParams;
|
|
}
|
|
|
|
// Returns 'true' if the current view performs a perspective projection.
|
|
bool IsPerspectiveProjection()
|
|
{
|
|
return (unity_OrthoParams.w == 0);
|
|
}
|
|
|
|
float3 GetCameraPositionWS()
|
|
{
|
|
// Currently we do not support Camera Relative Rendering so
|
|
// we simply return the _WorldSpaceCameraPos until then
|
|
return _WorldSpaceCameraPos;
|
|
|
|
// We will replace the code above with this one once
|
|
// we start supporting Camera Relative Rendering
|
|
//#if (SHADEROPTIONS_CAMERA_RELATIVE_RENDERING != 0)
|
|
// return float3(0, 0, 0);
|
|
//#else
|
|
// return _WorldSpaceCameraPos;
|
|
//#endif
|
|
}
|
|
|
|
// Could be e.g. the position of a primary camera or a shadow-casting light.
|
|
float3 GetCurrentViewPosition()
|
|
{
|
|
// Currently we do not support Camera Relative Rendering so
|
|
// we simply return the _WorldSpaceCameraPos until then
|
|
return GetCameraPositionWS();
|
|
|
|
// We will replace the code above with this one once
|
|
// we start supporting Camera Relative Rendering
|
|
//#if defined(SHADERPASS) && (SHADERPASS != SHADERPASS_SHADOWS)
|
|
// return GetCameraPositionWS();
|
|
//#else
|
|
// // This is a generic solution.
|
|
// // However, for the primary camera, using '_WorldSpaceCameraPos' is better for cache locality,
|
|
// // and in case we enable camera-relative rendering, we can statically set the position is 0.
|
|
// return UNITY_MATRIX_I_V._14_24_34;
|
|
//#endif
|
|
}
|
|
|
|
// Returns the forward (central) direction of the current view in the world space.
|
|
float3 GetViewForwardDir()
|
|
{
|
|
float4x4 viewMat = GetWorldToViewMatrix();
|
|
return -viewMat[2].xyz;
|
|
}
|
|
|
|
// Computes the world space view direction (pointing towards the viewer).
|
|
float3 GetWorldSpaceViewDir(float3 positionWS)
|
|
{
|
|
if (IsPerspectiveProjection())
|
|
{
|
|
// Perspective
|
|
return GetCurrentViewPosition() - positionWS;
|
|
}
|
|
else
|
|
{
|
|
// Orthographic
|
|
return -GetViewForwardDir();
|
|
}
|
|
}
|
|
|
|
// Computes the object space view direction (pointing towards the viewer).
|
|
half3 GetObjectSpaceNormalizeViewDir(float3 positionOS)
|
|
{
|
|
if (IsPerspectiveProjection())
|
|
{
|
|
// Perspective
|
|
float3 V = TransformWorldToObject(GetCurrentViewPosition()) - positionOS;
|
|
return half3(normalize(V));
|
|
}
|
|
else
|
|
{
|
|
// Orthographic
|
|
return half3(TransformWorldToObjectNormal(-GetViewForwardDir()));
|
|
}
|
|
}
|
|
|
|
half3 GetWorldSpaceNormalizeViewDir(float3 positionWS)
|
|
{
|
|
if (IsPerspectiveProjection())
|
|
{
|
|
// Perspective
|
|
float3 V = GetCurrentViewPosition() - positionWS;
|
|
return half3(normalize(V));
|
|
}
|
|
else
|
|
{
|
|
// Orthographic
|
|
return half3(-GetViewForwardDir());
|
|
}
|
|
}
|
|
|
|
// UNITY_MATRIX_V defines a right-handed view space with the Z axis pointing towards the viewer.
|
|
// This function reverses the direction of the Z axis (so that it points forward),
|
|
// making the view space coordinate system left-handed.
|
|
void GetLeftHandedViewSpaceMatrices(out float4x4 viewMatrix, out float4x4 projMatrix)
|
|
{
|
|
viewMatrix = UNITY_MATRIX_V;
|
|
viewMatrix._31_32_33_34 = -viewMatrix._31_32_33_34;
|
|
|
|
projMatrix = UNITY_MATRIX_P;
|
|
projMatrix._13_23_33_43 = -projMatrix._13_23_33_43;
|
|
}
|
|
|
|
// Constants that represent material surface types
|
|
//
|
|
// These are expected to align with the commonly used "_Surface" material property
|
|
static const half kSurfaceTypeOpaque = 0.0;
|
|
static const half kSurfaceTypeTransparent = 1.0;
|
|
|
|
// Returns true if the input value represents an opaque surface
|
|
bool IsSurfaceTypeOpaque(half surfaceType)
|
|
{
|
|
return (surfaceType == kSurfaceTypeOpaque);
|
|
}
|
|
|
|
// Returns true if the input value represents a transparent surface
|
|
bool IsSurfaceTypeTransparent(half surfaceType)
|
|
{
|
|
return (surfaceType == kSurfaceTypeTransparent);
|
|
}
|
|
|
|
// Only define the alpha clipping helpers when the alpha test define is present.
|
|
// This should help identify usage errors early.
|
|
#if defined(_ALPHATEST_ON)
|
|
// Returns true if AlphaToMask functionality is currently available
|
|
// NOTE: This does NOT guarantee that AlphaToMask is enabled for the current draw. It only indicates that AlphaToMask functionality COULD be enabled for it.
|
|
// In cases where AlphaToMask COULD be enabled, we export a specialized alpha value from the shader.
|
|
// When AlphaToMask is enabled: The specialized alpha value is combined with the sample mask
|
|
// When AlphaToMask is not enabled: The specialized alpha value is either written into the framebuffer or dropped entirely depending on the color write mask
|
|
bool IsAlphaToMaskAvailable()
|
|
{
|
|
return (_AlphaToMaskAvailable != 0.0);
|
|
}
|
|
|
|
// Returns a sharpened alpha value for use with alpha to coverage
|
|
// This function behaves correctly in cases where alpha and cutoff are constant values (degenerate usage of alpha clipping)
|
|
half SharpenAlphaStrict(half alpha, half alphaClipTreshold)
|
|
{
|
|
half dAlpha = fwidth(alpha);
|
|
return saturate(((alpha - alphaClipTreshold - (0.5 * dAlpha)) / max(dAlpha, 0.0001)) + 1.0);
|
|
}
|
|
|
|
// When AlphaToMask is available: Returns a modified alpha value that should be exported from the shader so it can be combined with the sample mask
|
|
// When AlphaToMask is not available: Terminates the current invocation if the alpha value is below the cutoff and returns the input alpha value otherwise
|
|
half AlphaClip(half alpha, half cutoff)
|
|
{
|
|
bool a2c = IsAlphaToMaskAvailable();
|
|
|
|
// We explicitly detect cases where the alpha cutoff threshold is zero or below.
|
|
// When this case occurs, we need to modify the alpha to coverage logic to avoid visual artifacts.
|
|
bool zeroCutoff = (cutoff <= 0.0);
|
|
|
|
// If the user has specified zero as the cutoff threshold, the expectation is that the shader will function as if alpha-clipping was disabled.
|
|
// Ideally, the user should just turn off the alpha-clipping feature in this case, but in order to make this case work as expected, we force alpha
|
|
// to 1.0 here to ensure that alpha-to-coverage never throws away samples when its active. (This would cause opaque objects to appear transparent)
|
|
half alphaToCoverageAlpha = zeroCutoff ? 1.0 : SharpenAlphaStrict(alpha, cutoff);
|
|
|
|
// When the alpha to coverage alpha is used for clipping, we subtract a small value from it to ensure that pixels with zero alpha exit early
|
|
// rather than running the entire shader and then multiplying the sample coverage mask by zero which outputs nothing.
|
|
half clipVal = (a2c && !zeroCutoff) ? (alphaToCoverageAlpha - 0.0001) : (alpha - cutoff);
|
|
|
|
// When alpha-to-coverage is available: Use the specialized value which will be exported from the shader and combined with the MSAA coverage mask.
|
|
// When alpha-to-coverage is not available: Use the "clipped" value. A clipped value will always result in thread termination via the clip() logic below.
|
|
half outputAlpha = a2c ? alphaToCoverageAlpha : alpha;
|
|
|
|
clip(clipVal);
|
|
|
|
return outputAlpha;
|
|
}
|
|
#endif
|
|
|
|
// Terminates the current invocation if the input alpha value is below the specified cutoff value and returns an updated alpha value otherwise.
|
|
// When provided, the offset value is added to the cutoff value during the comparison logic.
|
|
// The return value from this function should be exported as the final alpha value in fragment shaders so it can be combined with the MSAA coverage mask.
|
|
//
|
|
// When _ALPHATEST_ON is defined: The returned value follows the behavior noted in the AlphaClip function
|
|
// When _ALPHATEST_ON is not defined: The returned value is equal to the original alpha input parameter
|
|
//
|
|
// NOTE: When _ALPHATEST_ON is not defined, this function is effectively a no-op.
|
|
real AlphaDiscard(real alpha, real cutoff, real offset = real(0.0))
|
|
{
|
|
#if defined(_ALPHATEST_ON)
|
|
if (IsAlphaDiscardEnabled())
|
|
alpha = AlphaClip(alpha, cutoff + offset);
|
|
#endif
|
|
|
|
return alpha;
|
|
}
|
|
|
|
half OutputAlpha(half alpha, bool isTransparent)
|
|
{
|
|
if (isTransparent)
|
|
{
|
|
return alpha;
|
|
}
|
|
else
|
|
{
|
|
#if defined(_ALPHATEST_ON)
|
|
// Opaque materials should always export an alpha value of 1.0 unless alpha-to-coverage is available
|
|
return IsAlphaToMaskAvailable() ? alpha : 1.0;
|
|
#else
|
|
return 1.0;
|
|
#endif
|
|
}
|
|
}
|
|
|
|
half3 AlphaModulate(half3 albedo, half alpha)
|
|
{
|
|
// Fake alpha for multiply blend by lerping albedo towards 1 (white) using alpha.
|
|
// Manual adjustment for "lighter" multiply effect (similar to "premultiplied alpha")
|
|
// would be painting whiter pixels in the texture.
|
|
// This emulates that procedure in shader, so it should be applied to the base/source color.
|
|
#if defined(_ALPHAMODULATE_ON)
|
|
return lerp(half3(1.0, 1.0, 1.0), albedo, alpha);
|
|
#else
|
|
return albedo;
|
|
#endif
|
|
}
|
|
|
|
half3 AlphaPremultiply(half3 albedo, half alpha)
|
|
{
|
|
// Multiply alpha into albedo only for Preserve Specular material diffuse part.
|
|
// Preserve Specular material (glass like) has different alpha for diffuse and specular lighting.
|
|
// Logically this is "variable" Alpha blending.
|
|
// (HW blend mode is premultiply, but with alpha multiply in shader.)
|
|
#if defined(_ALPHAPREMULTIPLY_ON)
|
|
return albedo * alpha;
|
|
#endif
|
|
return albedo;
|
|
}
|
|
|
|
// Normalization used to depend on SHADER_QUALITY
|
|
// Currently we always normalize to avoid lighting issues
|
|
// and platform inconsistencies.
|
|
half3 NormalizeNormalPerVertex(half3 normalWS)
|
|
{
|
|
return normalize(normalWS);
|
|
}
|
|
|
|
float3 NormalizeNormalPerVertex(float3 normalWS)
|
|
{
|
|
return normalize(normalWS);
|
|
}
|
|
|
|
half3 NormalizeNormalPerPixel(half3 normalWS)
|
|
{
|
|
// With XYZ normal map encoding we sporadically sample normals with near-zero-length causing Inf/NaN
|
|
#if defined(UNITY_NO_DXT5nm) && defined(_NORMALMAP)
|
|
return SafeNormalize(normalWS);
|
|
#else
|
|
return normalize(normalWS);
|
|
#endif
|
|
}
|
|
|
|
float3 NormalizeNormalPerPixel(float3 normalWS)
|
|
{
|
|
#if defined(UNITY_NO_DXT5nm) && defined(_NORMALMAP)
|
|
return SafeNormalize(normalWS);
|
|
#else
|
|
return normalize(normalWS);
|
|
#endif
|
|
}
|
|
|
|
|
|
|
|
real ComputeFogFactorZ0ToFar(float z)
|
|
{
|
|
#if defined(FOG_LINEAR)
|
|
// factor = (end-z)/(end-start) = z * (-1/(end-start)) + (end/(end-start))
|
|
float fogFactor = saturate(z * unity_FogParams.z + unity_FogParams.w);
|
|
return real(fogFactor);
|
|
#elif defined(FOG_EXP) || defined(FOG_EXP2)
|
|
// factor = exp(-(density*z)^2)
|
|
// -density * z computed at vertex
|
|
return real(unity_FogParams.x * z);
|
|
#else
|
|
return real(0.0);
|
|
#endif
|
|
}
|
|
|
|
real ComputeFogFactor(float zPositionCS)
|
|
{
|
|
float clipZ_0Far = UNITY_Z_0_FAR_FROM_CLIPSPACE(zPositionCS);
|
|
return ComputeFogFactorZ0ToFar(clipZ_0Far);
|
|
}
|
|
|
|
half ComputeFogIntensity(half fogFactor)
|
|
{
|
|
half fogIntensity = half(0.0);
|
|
#if defined(FOG_LINEAR) || defined(FOG_EXP) || defined(FOG_EXP2)
|
|
#if defined(FOG_EXP)
|
|
// factor = exp(-density*z)
|
|
// fogFactor = density*z compute at vertex
|
|
fogIntensity = saturate(exp2(-fogFactor));
|
|
#elif defined(FOG_EXP2)
|
|
// factor = exp(-(density*z)^2)
|
|
// fogFactor = density*z compute at vertex
|
|
fogIntensity = saturate(exp2(-fogFactor * fogFactor));
|
|
#elif defined(FOG_LINEAR)
|
|
fogIntensity = fogFactor;
|
|
#endif
|
|
#endif
|
|
return fogIntensity;
|
|
}
|
|
|
|
// Force enable fog fragment shader evaluation
|
|
#define _FOG_FRAGMENT 1
|
|
real InitializeInputDataFog(float4 positionWS, real vertFogFactor)
|
|
{
|
|
real fogFactor = 0.0;
|
|
#if defined(_FOG_FRAGMENT)
|
|
#if (defined(FOG_LINEAR) || defined(FOG_EXP) || defined(FOG_EXP2))
|
|
// Compiler eliminates unused math --> matrix.column_z * vec
|
|
float viewZ = -(mul(UNITY_MATRIX_V, positionWS).z);
|
|
// View Z is 0 at camera pos, remap 0 to near plane.
|
|
float nearToFarZ = max(viewZ - _ProjectionParams.y, 0);
|
|
fogFactor = ComputeFogFactorZ0ToFar(nearToFarZ);
|
|
#endif
|
|
#else
|
|
fogFactor = vertFogFactor;
|
|
#endif
|
|
return fogFactor;
|
|
}
|
|
|
|
float ComputeFogIntensity(float fogFactor)
|
|
{
|
|
float fogIntensity = 0.0;
|
|
#if defined(FOG_LINEAR) || defined(FOG_EXP) || defined(FOG_EXP2)
|
|
#if defined(FOG_EXP)
|
|
// factor = exp(-density*z)
|
|
// fogFactor = density*z compute at vertex
|
|
fogIntensity = saturate(exp2(-fogFactor));
|
|
#elif defined(FOG_EXP2)
|
|
// factor = exp(-(density*z)^2)
|
|
// fogFactor = density*z compute at vertex
|
|
fogIntensity = saturate(exp2(-fogFactor * fogFactor));
|
|
#elif defined(FOG_LINEAR)
|
|
fogIntensity = fogFactor;
|
|
#endif
|
|
#endif
|
|
return fogIntensity;
|
|
}
|
|
|
|
half3 MixFogColor(half3 fragColor, half3 fogColor, half fogFactor)
|
|
{
|
|
#if defined(FOG_LINEAR) || defined(FOG_EXP) || defined(FOG_EXP2)
|
|
half fogIntensity = ComputeFogIntensity(fogFactor);
|
|
fragColor = lerp(fogColor, fragColor, fogIntensity);
|
|
#endif
|
|
return fragColor;
|
|
}
|
|
|
|
float3 MixFogColor(float3 fragColor, float3 fogColor, float fogFactor)
|
|
{
|
|
#if defined(FOG_LINEAR) || defined(FOG_EXP) || defined(FOG_EXP2)
|
|
if (IsFogEnabled())
|
|
{
|
|
float fogIntensity = ComputeFogIntensity(fogFactor);
|
|
fragColor = lerp(fogColor, fragColor, fogIntensity);
|
|
}
|
|
#endif
|
|
return fragColor;
|
|
}
|
|
|
|
half3 MixFog(half3 fragColor, half fogFactor)
|
|
{
|
|
return MixFogColor(fragColor, half3(unity_FogColor.rgb), fogFactor);
|
|
}
|
|
|
|
float3 MixFog(float3 fragColor, float fogFactor)
|
|
{
|
|
return MixFogColor(fragColor, unity_FogColor.rgb, fogFactor);
|
|
}
|
|
|
|
// Linear depth buffer value between [0, 1] or [1, 0] to eye depth value between [near, far]
|
|
half LinearDepthToEyeDepth(half rawDepth)
|
|
{
|
|
#if UNITY_REVERSED_Z
|
|
return half(_ProjectionParams.z - (_ProjectionParams.z - _ProjectionParams.y) * rawDepth);
|
|
#else
|
|
return half(_ProjectionParams.y + (_ProjectionParams.z - _ProjectionParams.y) * rawDepth);
|
|
#endif
|
|
}
|
|
|
|
float LinearDepthToEyeDepth(float rawDepth)
|
|
{
|
|
#if UNITY_REVERSED_Z
|
|
return _ProjectionParams.z - (_ProjectionParams.z - _ProjectionParams.y) * rawDepth;
|
|
#else
|
|
return _ProjectionParams.y + (_ProjectionParams.z - _ProjectionParams.y) * rawDepth;
|
|
#endif
|
|
}
|
|
|
|
void TransformScreenUV(inout float2 uv, float screenHeight)
|
|
{
|
|
#if UNITY_UV_STARTS_AT_TOP
|
|
uv.y = screenHeight - (uv.y * _ScaleBiasRt.x + _ScaleBiasRt.y * screenHeight);
|
|
#endif
|
|
}
|
|
|
|
void TransformScreenUV(inout float2 uv)
|
|
{
|
|
#if UNITY_UV_STARTS_AT_TOP
|
|
TransformScreenUV(uv, GetScaledScreenParams().y);
|
|
#endif
|
|
}
|
|
|
|
void TransformNormalizedScreenUV(inout float2 uv)
|
|
{
|
|
#if UNITY_UV_STARTS_AT_TOP
|
|
TransformScreenUV(uv, 1.0);
|
|
#endif
|
|
}
|
|
|
|
float2 GetNormalizedScreenSpaceUV(float2 positionCS)
|
|
{
|
|
float2 normalizedScreenSpaceUV = positionCS.xy * rcp(GetScaledScreenParams().xy);
|
|
TransformNormalizedScreenUV(normalizedScreenSpaceUV);
|
|
return normalizedScreenSpaceUV;
|
|
}
|
|
|
|
float2 GetNormalizedScreenSpaceUV(float4 positionCS)
|
|
{
|
|
return GetNormalizedScreenSpaceUV(positionCS.xy);
|
|
}
|
|
|
|
// Select uint4 component by index.
|
|
// Helper to improve codegen for 2d indexing (data[x][y])
|
|
// Replace:
|
|
// data[i / 4][i % 4];
|
|
// with:
|
|
// select4(data[i / 4], i % 4);
|
|
uint Select4(uint4 v, uint i)
|
|
{
|
|
// x = 0 = 00
|
|
// y = 1 = 01
|
|
// z = 2 = 10
|
|
// w = 3 = 11
|
|
uint mask0 = uint(int(i << 31) >> 31);
|
|
uint mask1 = uint(int(i << 30) >> 31);
|
|
return
|
|
(((v.w & mask0) | (v.z & ~mask0)) & mask1) |
|
|
(((v.y & mask0) | (v.x & ~mask0)) & ~mask1);
|
|
}
|
|
|
|
#if SHADER_TARGET < 45
|
|
uint URP_FirstBitLow(uint m)
|
|
{
|
|
// http://graphics.stanford.edu/~seander/bithacks.html#ZerosOnRightFloatCast
|
|
return (asuint((float)(m & asuint(-asint(m)))) >> 23) - 0x7F;
|
|
}
|
|
#define FIRST_BIT_LOW URP_FirstBitLow
|
|
#else
|
|
#define FIRST_BIT_LOW firstbitlow
|
|
#endif
|
|
|
|
#define UnityStereoTransformScreenSpaceTex(uv) uv
|
|
|
|
uint GetMeshRenderingLayer()
|
|
{
|
|
return asuint(unity_RenderingLayer.x);
|
|
}
|
|
|
|
float EncodeMeshRenderingLayer(uint renderingLayer)
|
|
{
|
|
// Force any bits above max to be skipped
|
|
renderingLayer &= _RenderingLayerMaxInt;
|
|
|
|
// This is copy of "real PackInt(uint i, uint numBits)" from com.unity.render-pipelines.core\ShaderLibrary\Packing.hlsl
|
|
// Differences of this copy:
|
|
// - Pre-computed rcpMaxInt
|
|
// - Returns float instead of real
|
|
float rcpMaxInt = _RenderingLayerRcpMaxInt;
|
|
return saturate(renderingLayer * rcpMaxInt);
|
|
}
|
|
|
|
uint DecodeMeshRenderingLayer(float renderingLayer)
|
|
{
|
|
// This is copy of "uint UnpackInt(real f, uint numBits)" from com.unity.render-pipelines.core\ShaderLibrary\Packing.hlsl
|
|
// Differences of this copy:
|
|
// - Pre-computed maxInt
|
|
// - Parameter f is float instead of real
|
|
uint maxInt = _RenderingLayerMaxInt;
|
|
return (uint)(renderingLayer * maxInt + 0.5); // Round instead of truncating
|
|
}
|
|
|
|
// TODO: implement
|
|
float GetCurrentExposureMultiplier()
|
|
{
|
|
return 1;
|
|
}
|
|
|
|
#endif // UNITY_SHADER_VARIABLES_FUNCTIONS_INCLUDED
|