97 lines
3.5 KiB
HLSL
97 lines
3.5 KiB
HLSL
#include "Packages/com.unity.render-pipelines.universal/ShaderLibrary/Core.hlsl"
|
|
#include "Packages/com.unity.render-pipelines.core/ShaderLibrary/Color.hlsl"
|
|
#include "Packages/com.unity.render-pipelines.core/ShaderLibrary/FoveatedRendering.hlsl"
|
|
#include "Packages/com.unity.render-pipelines.core/ShaderLibrary/HDROutput.hlsl"
|
|
|
|
#if SRC_TEXTURE2D_X_ARRAY
|
|
TEXTURE2D_ARRAY(_SourceTex);
|
|
#else
|
|
TEXTURE2D(_SourceTex);
|
|
#endif
|
|
|
|
uniform uint _SourceTexArraySlice;
|
|
uniform uint _SRGBRead;
|
|
uniform uint _SRGBWrite;
|
|
uniform float _MaxNits;
|
|
uniform float _SourceMaxNits;
|
|
uniform int _SourceHDREncoding;
|
|
uniform float4x4 _ColorTransform;
|
|
|
|
|
|
struct Attributes
|
|
{
|
|
uint vertexID : SV_VertexID;
|
|
};
|
|
|
|
struct Varyings
|
|
{
|
|
float4 positionCS : SV_POSITION;
|
|
float2 texcoord : TEXCOORD0;
|
|
};
|
|
|
|
Varyings VertQuad(Attributes input)
|
|
{
|
|
Varyings output;
|
|
output.positionCS = GetQuadVertexPosition(input.vertexID) * float4(_ScaleBiasRt.x, _ScaleBiasRt.y, 1, 1) + float4(_ScaleBiasRt.z, _ScaleBiasRt.w, 0, 0);
|
|
output.positionCS.xy = output.positionCS.xy * float2(2.0f, -2.0f) + float2(-1.0f, 1.0f); //convert to -1..1
|
|
|
|
//Using temporary as writing to global _ScaleBias.w is prohibited when compiling with DXC
|
|
float scaleBiasW = _ScaleBias.w;
|
|
#if UNITY_UV_STARTS_AT_TOP
|
|
// Unity viewport convention is bottom left as origin. Adjust Scalebias to read the correct region.
|
|
scaleBiasW = 1 - _ScaleBias.w - _ScaleBias.y;
|
|
#endif
|
|
output.texcoord = GetQuadTexCoord(input.vertexID) * _ScaleBias.xy + float2(_ScaleBias.z, scaleBiasW);
|
|
return output;
|
|
}
|
|
|
|
float4 FragBilinear(Varyings input) : SV_Target
|
|
{
|
|
|
|
float4 outColor;
|
|
float2 uv = input.texcoord.xy;
|
|
|
|
#if defined(SUPPORTS_FOVEATED_RENDERING_NON_UNIFORM_RASTER)
|
|
UNITY_BRANCH if (_FOVEATED_RENDERING_NON_UNIFORM_RASTER)
|
|
{
|
|
// We use stereo eye index to sample the correct slice when resolving foveated targets.
|
|
// Since MirrorView is not a stereo shader we have to populate unity_StereoEyeIndex ourselves.
|
|
unity_StereoEyeIndex = _SourceTexArraySlice;
|
|
|
|
uv = RemapFoveatedRenderingLinearToNonUniform(input.texcoord.xy);
|
|
}
|
|
#endif // SUPPORTS_FOVEATED_RENDERING_NON_UNIFORM_RASTER
|
|
|
|
#if SRC_TEXTURE2D_X_ARRAY
|
|
outColor = SAMPLE_TEXTURE2D_ARRAY(_SourceTex, sampler_LinearClamp, uv, _SourceTexArraySlice);
|
|
#else
|
|
outColor = SAMPLE_TEXTURE2D(_SourceTex, sampler_LinearClamp, uv);
|
|
#endif
|
|
|
|
#if HDR_COLORSPACE_CONVERSION_AND_ENCODING
|
|
// Currently this will case any values in the source color space that go outside of the destination to most likley get clamped
|
|
// the same will be true for any luminance values in the source range outside the destination range. This will lead to hue shifts
|
|
// and over saturated display, e.g. a red value of (1000, 100, 100) if converted to SDR would get clamped at (80,80,80) generating white.
|
|
// TODO: The solution here is to add a hue preserving tonemap operator in as part of the conversion process but this will add quite a bit of extra expense.
|
|
|
|
// Convert the encoded output image into linear
|
|
outColor.rgb = InverseOETF(outColor.rgb, _SourceMaxNits, _SourceHDREncoding);
|
|
// Now we need to convert the color space from source to destination;
|
|
outColor.rgb = mul((float3x3)_ColorTransform, outColor.rgb);
|
|
// Convert the linear image into the correct encoded output for the display
|
|
outColor.rgb = OETF(outColor.rgb, _MaxNits);
|
|
#else
|
|
if (_SRGBRead && _SRGBWrite)
|
|
return outColor;
|
|
|
|
if (_SRGBRead)
|
|
outColor = SRGBToLinear(outColor);
|
|
|
|
if (_SRGBWrite)
|
|
outColor = LinearToSRGB(outColor);
|
|
#endif
|
|
|
|
|
|
return outColor;
|
|
}
|