Rasagar/Library/PackageCache/com.unity.render-pipelines.universal/ShaderLibrary/GlobalIllumination.hlsl
2024-08-26 23:07:20 +03:00

534 lines
23 KiB
HLSL

#ifndef UNIVERSAL_GLOBAL_ILLUMINATION_INCLUDED
#define UNIVERSAL_GLOBAL_ILLUMINATION_INCLUDED
#include "Packages/com.unity.render-pipelines.core/ShaderLibrary/EntityLighting.hlsl"
#include "Packages/com.unity.render-pipelines.core/ShaderLibrary/ImageBasedLighting.hlsl"
#include "Packages/com.unity.render-pipelines.universal/ShaderLibrary/RealtimeLights.hlsl"
#define AMBIENT_PROBE_BUFFER 0
#include "Packages/com.unity.render-pipelines.core/ShaderLibrary/AmbientProbe.hlsl"
#if defined(PROBE_VOLUMES_L1) || defined(PROBE_VOLUMES_L2)
#include "Packages/com.unity.render-pipelines.core/Runtime/Lighting/ProbeVolume/ProbeVolume.hlsl"
#endif
#if USE_FORWARD_PLUS
#include "Packages/com.unity.render-pipelines.core/ShaderLibrary/Packing.hlsl"
#endif
// If lightmap is not defined than we evaluate GI (ambient + probes) from SH
// Renamed -> LIGHTMAP_SHADOW_MIXING
#if !defined(_MIXED_LIGHTING_SUBTRACTIVE) && defined(LIGHTMAP_SHADOW_MIXING) && !defined(SHADOWS_SHADOWMASK)
#define _MIXED_LIGHTING_SUBTRACTIVE
#endif
// SH Vertex Evaluation. Depending on target SH sampling might be
// done completely per vertex or mixed with L2 term per vertex and L0, L1
// per pixel. See SampleSHPixel
half3 SampleSHVertex(half3 normalWS)
{
#if defined(EVALUATE_SH_VERTEX)
return EvaluateAmbientProbeSRGB(normalWS);
#elif defined(EVALUATE_SH_MIXED)
// no max since this is only L2 contribution
return SHEvalLinearL2(normalWS, unity_SHBr, unity_SHBg, unity_SHBb, unity_SHC);
#endif
// Fully per-pixel. Nothing to compute.
return half3(0.0, 0.0, 0.0);
}
// SH Pixel Evaluation. Depending on target SH sampling might be done
// mixed or fully in pixel. See SampleSHVertex
half3 SampleSHPixel(half3 L2Term, half3 normalWS)
{
#if defined(EVALUATE_SH_VERTEX)
return L2Term;
#elif defined(EVALUATE_SH_MIXED)
half3 res = L2Term + SHEvalLinearL0L1(normalWS, unity_SHAr, unity_SHAg, unity_SHAb);
#ifdef UNITY_COLORSPACE_GAMMA
res = LinearToSRGB(res);
#endif
return max(half3(0, 0, 0), res);
#endif
// Default: Evaluate SH fully per-pixel
return EvaluateAmbientProbeSRGB(normalWS);
}
// APV Prove volume
// Vertex and Mixed both use Vertex sampling
#if (defined(PROBE_VOLUMES_L1) || defined(PROBE_VOLUMES_L2))
half3 SampleProbeVolumeVertex(in float3 absolutePositionWS, in float3 normalWS, in float3 viewDir, out float4 probeOcclusion)
{
probeOcclusion = 1.0;
#if defined(EVALUATE_SH_VERTEX) || defined(EVALUATE_SH_MIXED)
half3 bakedGI;
// The screen space position is used for noise, which is irrelevant when doing vertex sampling
float2 positionSS = float2(0, 0);
if (_EnableProbeVolumes)
{
EvaluateAdaptiveProbeVolume(absolutePositionWS, normalWS, viewDir, positionSS, GetMeshRenderingLayer(), bakedGI, probeOcclusion);
}
else
{
bakedGI = EvaluateAmbientProbe(normalWS);
}
#ifdef UNITY_COLORSPACE_GAMMA
bakedGI = LinearToSRGB(bakedGI);
#endif
return bakedGI;
#else
return half3(0, 0, 0);
#endif
}
half3 SampleProbeVolumePixel(in half3 vertexValue, in float3 absolutePositionWS, in float3 normalWS, in float3 viewDir, in float2 positionSS, in float4 vertexProbeOcclusion, out float4 probeOcclusion)
{
probeOcclusion = 1.0;
#if defined(EVALUATE_SH_VERTEX) || defined(EVALUATE_SH_MIXED)
probeOcclusion = vertexProbeOcclusion;
return vertexValue;
#elif defined(PROBE_VOLUMES_L1) || defined(PROBE_VOLUMES_L2)
half3 bakedGI;
if (_EnableProbeVolumes)
{
EvaluateAdaptiveProbeVolume(absolutePositionWS, normalWS, viewDir, positionSS, GetMeshRenderingLayer(), bakedGI, probeOcclusion);
}
else
{
bakedGI = EvaluateAmbientProbe(normalWS);
}
#ifdef UNITY_COLORSPACE_GAMMA
bakedGI = LinearToSRGB(bakedGI);
#endif
return bakedGI;
#else
return half3(0, 0, 0);
#endif
}
half3 SampleProbeVolumePixel(in half3 vertexValue, in float3 absolutePositionWS, in float3 normalWS, in float3 viewDir, in float2 positionSS)
{
float4 unusedProbeOcclusion = 0;
return SampleProbeVolumePixel(vertexValue, absolutePositionWS, normalWS, viewDir, positionSS, unusedProbeOcclusion, unusedProbeOcclusion);
}
#endif
half3 SampleProbeSHVertex(in float3 absolutePositionWS, in float3 normalWS, in float3 viewDir, out float4 probeOcclusion)
{
probeOcclusion = 1.0;
#if (defined(PROBE_VOLUMES_L1) || defined(PROBE_VOLUMES_L2))
return SampleProbeVolumeVertex(absolutePositionWS, normalWS, viewDir, probeOcclusion);
#else
return SampleSHVertex(normalWS);
#endif
}
half3 SampleProbeSHVertex(in float3 absolutePositionWS, in float3 normalWS, in float3 viewDir)
{
float4 unusedProbeOcclusion = 0;
return SampleProbeSHVertex(absolutePositionWS, normalWS, viewDir, unusedProbeOcclusion);
}
#if defined(UNITY_DOTS_INSTANCING_ENABLED) && !defined(USE_LEGACY_LIGHTMAPS)
// ^ GPU-driven rendering is enabled, and we haven't opted-out from lightmap
// texture arrays. This minimizes batch breakages, but texture arrays aren't
// supported in a performant way on all GPUs.
#define LIGHTMAP_NAME unity_Lightmaps
#define LIGHTMAP_INDIRECTION_NAME unity_LightmapsInd
#define LIGHTMAP_SAMPLER_NAME samplerunity_Lightmaps
#define LIGHTMAP_SAMPLE_EXTRA_ARGS staticLightmapUV, unity_LightmapIndex.x
#else
// ^ Lightmaps are not bound as texture arrays, but as individual textures. The
// batch is broken every time lightmaps are changed, but this is well-supported
// on all GPUs.
#define LIGHTMAP_NAME unity_Lightmap
#define LIGHTMAP_INDIRECTION_NAME unity_LightmapInd
#define LIGHTMAP_SAMPLER_NAME samplerunity_Lightmap
#define LIGHTMAP_SAMPLE_EXTRA_ARGS staticLightmapUV
#endif
// Sample baked and/or realtime lightmap. Non-Direction and Directional if available.
half3 SampleLightmap(float2 staticLightmapUV, float2 dynamicLightmapUV, half3 normalWS)
{
// The shader library sample lightmap functions transform the lightmap uv coords to apply bias and scale.
// However, universal pipeline already transformed those coords in vertex. We pass half4(1, 1, 0, 0) and
// the compiler will optimize the transform away.
half4 transformCoords = half4(1, 1, 0, 0);
float3 diffuseLighting = 0;
#if defined(LIGHTMAP_ON) && defined(DIRLIGHTMAP_COMBINED)
diffuseLighting = SampleDirectionalLightmap(TEXTURE2D_LIGHTMAP_ARGS(LIGHTMAP_NAME, LIGHTMAP_SAMPLER_NAME),
TEXTURE2D_LIGHTMAP_ARGS(LIGHTMAP_INDIRECTION_NAME, LIGHTMAP_SAMPLER_NAME),
LIGHTMAP_SAMPLE_EXTRA_ARGS, transformCoords, normalWS, true);
#elif defined(LIGHTMAP_ON)
diffuseLighting = SampleSingleLightmap(TEXTURE2D_LIGHTMAP_ARGS(LIGHTMAP_NAME, LIGHTMAP_SAMPLER_NAME), LIGHTMAP_SAMPLE_EXTRA_ARGS, transformCoords, true);
#endif
#if defined(DYNAMICLIGHTMAP_ON) && defined(DIRLIGHTMAP_COMBINED)
diffuseLighting += SampleDirectionalLightmap(TEXTURE2D_ARGS(unity_DynamicLightmap, samplerunity_DynamicLightmap),
TEXTURE2D_ARGS(unity_DynamicDirectionality, samplerunity_DynamicLightmap),
dynamicLightmapUV, transformCoords, normalWS, false);
#elif defined(DYNAMICLIGHTMAP_ON)
diffuseLighting += SampleSingleLightmap(TEXTURE2D_ARGS(unity_DynamicLightmap, samplerunity_DynamicLightmap),
dynamicLightmapUV, transformCoords, false);
#endif
return diffuseLighting;
}
// Legacy version of SampleLightmap where Realtime GI is not supported.
half3 SampleLightmap(float2 staticLightmapUV, half3 normalWS)
{
float2 dummyDynamicLightmapUV = float2(0,0);
half3 result = SampleLightmap(staticLightmapUV, dummyDynamicLightmapUV, normalWS);
return result;
}
// We either sample GI from baked lightmap or from probes.
// If lightmap: sampleData.xy = lightmapUV
// If probe: sampleData.xyz = L2 SH terms
#if defined(LIGHTMAP_ON) && defined(DYNAMICLIGHTMAP_ON)
#define SAMPLE_GI(staticLmName, dynamicLmName, shName, normalWSName) SampleLightmap(staticLmName, dynamicLmName, normalWSName)
#elif defined(DYNAMICLIGHTMAP_ON)
#define SAMPLE_GI(staticLmName, dynamicLmName, shName, normalWSName) SampleLightmap(0, dynamicLmName, normalWSName)
#elif defined(LIGHTMAP_ON)
#define SAMPLE_GI(staticLmName, shName, normalWSName) SampleLightmap(staticLmName, 0, normalWSName)
#elif defined(PROBE_VOLUMES_L1) || defined(PROBE_VOLUMES_L2)
#ifdef USE_APV_PROBE_OCCLUSION
#define SAMPLE_GI(shName, absolutePositionWS, normalWS, viewDir, positionSS, vertexProbeOcclusion, probeOcclusion) SampleProbeVolumePixel(shName, absolutePositionWS, normalWS, viewDir, positionSS, vertexProbeOcclusion, probeOcclusion)
#else
#define SAMPLE_GI(shName, absolutePositionWS, normalWS, viewDir, positionSS, vertexProbeOcclusion, probeOcclusion) SampleProbeVolumePixel(shName, absolutePositionWS, normalWS, viewDir, positionSS)
#endif
#else
#define SAMPLE_GI(staticLmName, shName, normalWSName) SampleSHPixel(shName, normalWSName)
#endif
half3 BoxProjectedCubemapDirection(half3 reflectionWS, float3 positionWS, float4 cubemapPositionWS, float4 boxMin, float4 boxMax)
{
// Is this probe using box projection?
if (cubemapPositionWS.w > 0.0f)
{
float3 boxMinMax = (reflectionWS > 0.0f) ? boxMax.xyz : boxMin.xyz;
half3 rbMinMax = half3(boxMinMax - positionWS) / reflectionWS;
half fa = half(min(min(rbMinMax.x, rbMinMax.y), rbMinMax.z));
half3 worldPos = half3(positionWS - cubemapPositionWS.xyz);
half3 result = worldPos + reflectionWS * fa;
return result;
}
else
{
return reflectionWS;
}
}
float CalculateProbeWeight(float3 positionWS, float4 probeBoxMin, float4 probeBoxMax)
{
float blendDistance = probeBoxMax.w;
float3 weightDir = min(positionWS - probeBoxMin.xyz, probeBoxMax.xyz - positionWS) / blendDistance;
return saturate(min(weightDir.x, min(weightDir.y, weightDir.z)));
}
half CalculateProbeVolumeSqrMagnitude(float4 probeBoxMin, float4 probeBoxMax)
{
half3 maxToMin = half3(probeBoxMax.xyz - probeBoxMin.xyz);
return dot(maxToMin, maxToMin);
}
half3 CalculateIrradianceFromReflectionProbes(half3 reflectVector, float3 positionWS, half perceptualRoughness, float2 normalizedScreenSpaceUV)
{
half3 irradiance = half3(0.0h, 0.0h, 0.0h);
half mip = PerceptualRoughnessToMipmapLevel(perceptualRoughness);
#if USE_FORWARD_PLUS
float totalWeight = 0.0f;
uint probeIndex;
ClusterIterator it = ClusterInit(normalizedScreenSpaceUV, positionWS, 1);
[loop] while (ClusterNext(it, probeIndex) && totalWeight < 0.99f)
{
probeIndex -= URP_FP_PROBES_BEGIN;
float weight = CalculateProbeWeight(positionWS, urp_ReflProbes_BoxMin[probeIndex], urp_ReflProbes_BoxMax[probeIndex]);
weight = min(weight, 1.0f - totalWeight);
half3 sampleVector = reflectVector;
#ifdef _REFLECTION_PROBE_BOX_PROJECTION
sampleVector = BoxProjectedCubemapDirection(reflectVector, positionWS, urp_ReflProbes_ProbePosition[probeIndex], urp_ReflProbes_BoxMin[probeIndex], urp_ReflProbes_BoxMax[probeIndex]);
#endif // _REFLECTION_PROBE_BOX_PROJECTION
uint maxMip = (uint)abs(urp_ReflProbes_ProbePosition[probeIndex].w) - 1;
half probeMip = min(mip, maxMip);
float2 uv = saturate(PackNormalOctQuadEncode(sampleVector) * 0.5 + 0.5);
float mip0 = floor(probeMip);
float mip1 = mip0 + 1;
float mipBlend = probeMip - mip0;
float4 scaleOffset0 = urp_ReflProbes_MipScaleOffset[probeIndex * 7 + (uint)mip0];
float4 scaleOffset1 = urp_ReflProbes_MipScaleOffset[probeIndex * 7 + (uint)mip1];
half3 irradiance0 = half4(SAMPLE_TEXTURE2D_LOD(urp_ReflProbes_Atlas, sampler_LinearClamp, uv * scaleOffset0.xy + scaleOffset0.zw, 0.0)).rgb;
half3 irradiance1 = half4(SAMPLE_TEXTURE2D_LOD(urp_ReflProbes_Atlas, sampler_LinearClamp, uv * scaleOffset1.xy + scaleOffset1.zw, 0.0)).rgb;
irradiance += weight * lerp(irradiance0, irradiance1, mipBlend);
totalWeight += weight;
}
#else
half probe0Volume = CalculateProbeVolumeSqrMagnitude(unity_SpecCube0_BoxMin, unity_SpecCube0_BoxMax);
half probe1Volume = CalculateProbeVolumeSqrMagnitude(unity_SpecCube1_BoxMin, unity_SpecCube1_BoxMax);
half volumeDiff = probe0Volume - probe1Volume;
float importanceSign = unity_SpecCube1_BoxMin.w;
// A probe is dominant if its importance is higher
// Or have equal importance but smaller volume
bool probe0Dominant = importanceSign > 0.0f || (importanceSign == 0.0f && volumeDiff < -0.0001h);
bool probe1Dominant = importanceSign < 0.0f || (importanceSign == 0.0f && volumeDiff > 0.0001h);
float desiredWeightProbe0 = CalculateProbeWeight(positionWS, unity_SpecCube0_BoxMin, unity_SpecCube0_BoxMax);
float desiredWeightProbe1 = CalculateProbeWeight(positionWS, unity_SpecCube1_BoxMin, unity_SpecCube1_BoxMax);
// Subject the probes weight if the other probe is dominant
float weightProbe0 = probe1Dominant ? min(desiredWeightProbe0, 1.0f - desiredWeightProbe1) : desiredWeightProbe0;
float weightProbe1 = probe0Dominant ? min(desiredWeightProbe1, 1.0f - desiredWeightProbe0) : desiredWeightProbe1;
float totalWeight = weightProbe0 + weightProbe1;
// If either probe 0 or probe 1 is dominant the sum of weights is guaranteed to be 1.
// If neither is dominant this is not guaranteed - only normalize weights if totalweight exceeds 1.
weightProbe0 /= max(totalWeight, 1.0f);
weightProbe1 /= max(totalWeight, 1.0f);
// Sample the first reflection probe
if (weightProbe0 > 0.01f)
{
half3 reflectVector0 = reflectVector;
#ifdef _REFLECTION_PROBE_BOX_PROJECTION
reflectVector0 = BoxProjectedCubemapDirection(reflectVector, positionWS, unity_SpecCube0_ProbePosition, unity_SpecCube0_BoxMin, unity_SpecCube0_BoxMax);
#endif // _REFLECTION_PROBE_BOX_PROJECTION
half4 encodedIrradiance = half4(SAMPLE_TEXTURECUBE_LOD(unity_SpecCube0, samplerunity_SpecCube0, reflectVector0, mip));
irradiance += weightProbe0 * DecodeHDREnvironment(encodedIrradiance, unity_SpecCube0_HDR);
}
// Sample the second reflection probe
if (weightProbe1 > 0.01f)
{
half3 reflectVector1 = reflectVector;
#ifdef _REFLECTION_PROBE_BOX_PROJECTION
reflectVector1 = BoxProjectedCubemapDirection(reflectVector, positionWS, unity_SpecCube1_ProbePosition, unity_SpecCube1_BoxMin, unity_SpecCube1_BoxMax);
#endif // _REFLECTION_PROBE_BOX_PROJECTION
half4 encodedIrradiance = half4(SAMPLE_TEXTURECUBE_LOD(unity_SpecCube1, samplerunity_SpecCube1, reflectVector1, mip));
irradiance += weightProbe1 * DecodeHDREnvironment(encodedIrradiance, unity_SpecCube1_HDR);
}
#endif
// Use any remaining weight to blend to environment reflection cube map
if (totalWeight < 0.99f)
{
half4 encodedIrradiance = half4(SAMPLE_TEXTURECUBE_LOD(_GlossyEnvironmentCubeMap, sampler_GlossyEnvironmentCubeMap, reflectVector, mip));
irradiance += (1.0f - totalWeight) * DecodeHDREnvironment(encodedIrradiance, _GlossyEnvironmentCubeMap_HDR);
}
return irradiance;
}
#if !USE_FORWARD_PLUS
half3 CalculateIrradianceFromReflectionProbes(half3 reflectVector, float3 positionWS, half perceptualRoughness)
{
return CalculateIrradianceFromReflectionProbes(reflectVector, positionWS, perceptualRoughness, float2(0.0f, 0.0f));
}
#endif
half3 GlossyEnvironmentReflection(half3 reflectVector, float3 positionWS, half perceptualRoughness, half occlusion, float2 normalizedScreenSpaceUV)
{
#if !defined(_ENVIRONMENTREFLECTIONS_OFF)
half3 irradiance;
#if defined(_REFLECTION_PROBE_BLENDING) || USE_FORWARD_PLUS
irradiance = CalculateIrradianceFromReflectionProbes(reflectVector, positionWS, perceptualRoughness, normalizedScreenSpaceUV);
#else
#ifdef _REFLECTION_PROBE_BOX_PROJECTION
reflectVector = BoxProjectedCubemapDirection(reflectVector, positionWS, unity_SpecCube0_ProbePosition, unity_SpecCube0_BoxMin, unity_SpecCube0_BoxMax);
#endif // _REFLECTION_PROBE_BOX_PROJECTION
half mip = PerceptualRoughnessToMipmapLevel(perceptualRoughness);
half4 encodedIrradiance = half4(SAMPLE_TEXTURECUBE_LOD(unity_SpecCube0, samplerunity_SpecCube0, reflectVector, mip));
irradiance = DecodeHDREnvironment(encodedIrradiance, unity_SpecCube0_HDR);
#endif // _REFLECTION_PROBE_BLENDING
return irradiance * occlusion;
#else
return _GlossyEnvironmentColor.rgb * occlusion;
#endif // _ENVIRONMENTREFLECTIONS_OFF
}
#if !USE_FORWARD_PLUS
half3 GlossyEnvironmentReflection(half3 reflectVector, float3 positionWS, half perceptualRoughness, half occlusion)
{
return GlossyEnvironmentReflection(reflectVector, positionWS, perceptualRoughness, occlusion, float2(0.0f, 0.0f));
}
#endif
half3 GlossyEnvironmentReflection(half3 reflectVector, half perceptualRoughness, half occlusion)
{
#if !defined(_ENVIRONMENTREFLECTIONS_OFF)
half3 irradiance;
half mip = PerceptualRoughnessToMipmapLevel(perceptualRoughness);
half4 encodedIrradiance = half4(SAMPLE_TEXTURECUBE_LOD(unity_SpecCube0, samplerunity_SpecCube0, reflectVector, mip));
irradiance = DecodeHDREnvironment(encodedIrradiance, unity_SpecCube0_HDR);
return irradiance * occlusion;
#else
return _GlossyEnvironmentColor.rgb * occlusion;
#endif // _ENVIRONMENTREFLECTIONS_OFF
}
half3 SubtractDirectMainLightFromLightmap(Light mainLight, half3 normalWS, half3 bakedGI)
{
// Let's try to make realtime shadows work on a surface, which already contains
// baked lighting and shadowing from the main sun light.
// Summary:
// 1) Calculate possible value in the shadow by subtracting estimated light contribution from the places occluded by realtime shadow:
// a) preserves other baked lights and light bounces
// b) eliminates shadows on the geometry facing away from the light
// 2) Clamp against user defined ShadowColor.
// 3) Pick original lightmap value, if it is the darkest one.
// 1) Gives good estimate of illumination as if light would've been shadowed during the bake.
// We only subtract the main direction light. This is accounted in the contribution term below.
half shadowStrength = GetMainLightShadowStrength();
half contributionTerm = saturate(dot(mainLight.direction, normalWS));
half3 lambert = mainLight.color * contributionTerm;
half3 estimatedLightContributionMaskedByInverseOfShadow = lambert * (1.0 - mainLight.shadowAttenuation);
half3 subtractedLightmap = bakedGI - estimatedLightContributionMaskedByInverseOfShadow;
// 2) Allows user to define overall ambient of the scene and control situation when realtime shadow becomes too dark.
half3 realtimeShadow = max(subtractedLightmap, _SubtractiveShadowColor.xyz);
realtimeShadow = lerp(bakedGI, realtimeShadow, shadowStrength);
// 3) Pick darkest color
return min(bakedGI, realtimeShadow);
}
half3 GlobalIllumination(BRDFData brdfData, BRDFData brdfDataClearCoat, float clearCoatMask,
half3 bakedGI, half occlusion, float3 positionWS,
half3 normalWS, half3 viewDirectionWS, float2 normalizedScreenSpaceUV)
{
half3 reflectVector = reflect(-viewDirectionWS, normalWS);
half NoV = saturate(dot(normalWS, viewDirectionWS));
half fresnelTerm = Pow4(1.0 - NoV);
half3 indirectDiffuse = bakedGI;
half3 indirectSpecular = GlossyEnvironmentReflection(reflectVector, positionWS, brdfData.perceptualRoughness, 1.0h, normalizedScreenSpaceUV);
half3 color = EnvironmentBRDF(brdfData, indirectDiffuse, indirectSpecular, fresnelTerm);
if (IsOnlyAOLightingFeatureEnabled())
{
color = half3(1,1,1); // "Base white" for AO debug lighting mode
}
#if defined(_CLEARCOAT) || defined(_CLEARCOATMAP)
half3 coatIndirectSpecular = GlossyEnvironmentReflection(reflectVector, positionWS, brdfDataClearCoat.perceptualRoughness, 1.0h, normalizedScreenSpaceUV);
// TODO: "grazing term" causes problems on full roughness
half3 coatColor = EnvironmentBRDFClearCoat(brdfDataClearCoat, clearCoatMask, coatIndirectSpecular, fresnelTerm);
// Blend with base layer using khronos glTF recommended way using NoV
// Smooth surface & "ambiguous" lighting
// NOTE: fresnelTerm (above) is pow4 instead of pow5, but should be ok as blend weight.
half coatFresnel = kDielectricSpec.x + kDielectricSpec.a * fresnelTerm;
return (color * (1.0 - coatFresnel * clearCoatMask) + coatColor) * occlusion;
#else
return color * occlusion;
#endif
}
#if !USE_FORWARD_PLUS
half3 GlobalIllumination(BRDFData brdfData, BRDFData brdfDataClearCoat, float clearCoatMask,
half3 bakedGI, half occlusion, float3 positionWS,
half3 normalWS, half3 viewDirectionWS)
{
return GlobalIllumination(brdfData, brdfDataClearCoat, clearCoatMask, bakedGI, occlusion, positionWS, normalWS, viewDirectionWS, float2(0.0f, 0.0f));
}
#endif
// Backwards compatiblity
half3 GlobalIllumination(BRDFData brdfData, half3 bakedGI, half occlusion, float3 positionWS, half3 normalWS, half3 viewDirectionWS)
{
const BRDFData noClearCoat = (BRDFData)0;
return GlobalIllumination(brdfData, noClearCoat, 0.0, bakedGI, occlusion, positionWS, normalWS, viewDirectionWS, 0);
}
half3 GlobalIllumination(BRDFData brdfData, BRDFData brdfDataClearCoat, float clearCoatMask,
half3 bakedGI, half occlusion,
half3 normalWS, half3 viewDirectionWS)
{
half3 reflectVector = reflect(-viewDirectionWS, normalWS);
half NoV = saturate(dot(normalWS, viewDirectionWS));
half fresnelTerm = Pow4(1.0 - NoV);
half3 indirectDiffuse = bakedGI;
half3 indirectSpecular = GlossyEnvironmentReflection(reflectVector, brdfData.perceptualRoughness, half(1.0));
half3 color = EnvironmentBRDF(brdfData, indirectDiffuse, indirectSpecular, fresnelTerm);
#if defined(_CLEARCOAT) || defined(_CLEARCOATMAP)
half3 coatIndirectSpecular = GlossyEnvironmentReflection(reflectVector, brdfDataClearCoat.perceptualRoughness, half(1.0));
// TODO: "grazing term" causes problems on full roughness
half3 coatColor = EnvironmentBRDFClearCoat(brdfDataClearCoat, clearCoatMask, coatIndirectSpecular, fresnelTerm);
// Blend with base layer using khronos glTF recommended way using NoV
// Smooth surface & "ambiguous" lighting
// NOTE: fresnelTerm (above) is pow4 instead of pow5, but should be ok as blend weight.
half coatFresnel = kDielectricSpec.x + kDielectricSpec.a * fresnelTerm;
return (color * (1.0 - coatFresnel * clearCoatMask) + coatColor) * occlusion;
#else
return color * occlusion;
#endif
}
half3 GlobalIllumination(BRDFData brdfData, half3 bakedGI, half occlusion, half3 normalWS, half3 viewDirectionWS)
{
const BRDFData noClearCoat = (BRDFData)0;
return GlobalIllumination(brdfData, noClearCoat, 0.0, bakedGI, occlusion, normalWS, viewDirectionWS);
}
void MixRealtimeAndBakedGI(inout Light light, half3 normalWS, inout half3 bakedGI)
{
#if defined(LIGHTMAP_ON) && defined(_MIXED_LIGHTING_SUBTRACTIVE)
bakedGI = SubtractDirectMainLightFromLightmap(light, normalWS, bakedGI);
#endif
}
// Backwards compatibility
void MixRealtimeAndBakedGI(inout Light light, half3 normalWS, inout half3 bakedGI, half4 shadowMask)
{
MixRealtimeAndBakedGI(light, normalWS, bakedGI);
}
void MixRealtimeAndBakedGI(inout Light light, half3 normalWS, inout half3 bakedGI, AmbientOcclusionFactor aoFactor)
{
if (IsLightingFeatureEnabled(DEBUGLIGHTINGFEATUREFLAGS_AMBIENT_OCCLUSION))
{
bakedGI *= aoFactor.indirectAmbientOcclusion;
}
MixRealtimeAndBakedGI(light, normalWS, bakedGI);
}
#endif