314 lines
12 KiB
HLSL
314 lines
12 KiB
HLSL
#ifndef UNITY_GEOMETRICTOOLS_INCLUDED
|
|
#define UNITY_GEOMETRICTOOLS_INCLUDED
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Transform functions
|
|
//-----------------------------------------------------------------------------
|
|
|
|
// Rotate around a pivot point and an axis
|
|
float3 Rotate(float3 pivot, float3 position, float3 rotationAxis, float angle)
|
|
{
|
|
rotationAxis = normalize(rotationAxis);
|
|
float3 cpa = pivot + rotationAxis * dot(rotationAxis, position - pivot);
|
|
return cpa + ((position - cpa) * cos(angle) + cross(rotationAxis, (position - cpa)) * sin(angle));
|
|
}
|
|
|
|
float3x3 RotationFromAxisAngle(float3 A, float sinAngle, float cosAngle)
|
|
{
|
|
float c = cosAngle;
|
|
float s = sinAngle;
|
|
|
|
return float3x3(A.x * A.x * (1 - c) + c, A.x * A.y * (1 - c) - A.z * s, A.x * A.z * (1 - c) + A.y * s,
|
|
A.x * A.y * (1 - c) + A.z * s, A.y * A.y * (1 - c) + c, A.y * A.z * (1 - c) - A.x * s,
|
|
A.x * A.z * (1 - c) - A.y * s, A.y * A.z * (1 - c) + A.x * s, A.z * A.z * (1 - c) + c);
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Solver
|
|
//-----------------------------------------------------------------------------
|
|
|
|
// Solves the quadratic equation of the form: a*t^2 + b*t + c = 0.
|
|
// Returns 'false' if there are no real roots, 'true' otherwise.
|
|
// Ensures that roots.x <= roots.y.
|
|
bool SolveQuadraticEquation(float a, float b, float c, out float2 roots)
|
|
{
|
|
float det = Sq(b) - 4.0 * a * c;
|
|
|
|
float sqrtDet = sqrt(det);
|
|
roots.x = (-b - sign(a) * sqrtDet) / (2.0 * a);
|
|
roots.y = (-b + sign(a) * sqrtDet) / (2.0 * a);
|
|
|
|
return (det >= 0.0);
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Intersection functions
|
|
//-----------------------------------------------------------------------------
|
|
|
|
bool IntersectRayAABB(float3 rayOrigin, float3 rayDirection,
|
|
float3 boxMin, float3 boxMax,
|
|
float tMin, float tMax,
|
|
out float tEntr, out float tExit)
|
|
{
|
|
// Could be precomputed. Clamp to avoid INF. clamp() is a single ALU on GCN.
|
|
// rcp(FLT_EPS) = 16,777,216, which is large enough for our purposes,
|
|
// yet doesn't cause a lot of numerical issues associated with FLT_MAX.
|
|
float3 rayDirInv = clamp(rcp(rayDirection), -rcp(FLT_EPS), rcp(FLT_EPS));
|
|
|
|
// Perform ray-slab intersection (component-wise).
|
|
float3 t0 = boxMin * rayDirInv - (rayOrigin * rayDirInv);
|
|
float3 t1 = boxMax * rayDirInv - (rayOrigin * rayDirInv);
|
|
|
|
// Find the closest/farthest distance (component-wise).
|
|
float3 tSlabEntr = min(t0, t1);
|
|
float3 tSlabExit = max(t0, t1);
|
|
|
|
// Find the farthest entry and the nearest exit.
|
|
tEntr = Max3(tSlabEntr.x, tSlabEntr.y, tSlabEntr.z);
|
|
tExit = Min3(tSlabExit.x, tSlabExit.y, tSlabExit.z);
|
|
|
|
// Clamp to the range.
|
|
tEntr = max(tEntr, tMin);
|
|
tExit = min(tExit, tMax);
|
|
|
|
return tEntr < tExit;
|
|
}
|
|
|
|
// This simplified version assume that we care about the result only when we are inside the box
|
|
float IntersectRayAABBSimple(float3 start, float3 dir, float3 boxMin, float3 boxMax)
|
|
{
|
|
float3 invDir = rcp(dir);
|
|
|
|
// Find the ray intersection with box plane
|
|
float3 rbmin = (boxMin - start) * invDir;
|
|
float3 rbmax = (boxMax - start) * invDir;
|
|
|
|
float3 rbminmax = float3((dir.x > 0.0) ? rbmax.x : rbmin.x, (dir.y > 0.0) ? rbmax.y : rbmin.y, (dir.z > 0.0) ? rbmax.z : rbmin.z);
|
|
|
|
return min(min(rbminmax.x, rbminmax.y), rbminmax.z);
|
|
}
|
|
|
|
// Assume Sphere is at the origin (i.e start = position - spherePosition)
|
|
bool IntersectRaySphere(float3 start, float3 dir, float radius, out float2 intersections)
|
|
{
|
|
float a = dot(dir, dir);
|
|
float b = dot(dir, start) * 2.0;
|
|
float c = dot(start, start) - radius * radius;
|
|
|
|
return SolveQuadraticEquation(a, b, c, intersections);
|
|
}
|
|
|
|
// This simplified version assume that we care about the result only when we are inside the sphere
|
|
// Assume Sphere is at the origin (i.e start = position - spherePosition) and dir is normalized
|
|
// Ref: http://http.developer.nvidia.com/GPUGems/gpugems_ch19.html
|
|
float IntersectRaySphereSimple(float3 start, float3 dir, float radius)
|
|
{
|
|
float b = dot(dir, start) * 2.0;
|
|
float c = dot(start, start) - radius * radius;
|
|
float discriminant = b * b - 4.0 * c;
|
|
|
|
return abs(sqrt(discriminant) - b) * 0.5;
|
|
}
|
|
|
|
float3 IntersectRayPlane(float3 rayOrigin, float3 rayDirection, float3 planeOrigin, float3 planeNormal)
|
|
{
|
|
float dist = dot(planeNormal, planeOrigin - rayOrigin) / dot(planeNormal, rayDirection);
|
|
return rayOrigin + rayDirection * dist;
|
|
}
|
|
|
|
// Same as above but return intersection distance and true / false if the ray hit/miss
|
|
bool IntersectRayPlane(float3 rayOrigin, float3 rayDirection, float3 planePosition, float3 planeNormal, out float t)
|
|
{
|
|
bool res = false;
|
|
t = -1.0;
|
|
|
|
float denom = dot(planeNormal, rayDirection);
|
|
if (abs(denom) > 1e-5)
|
|
{
|
|
float3 d = planePosition - rayOrigin;
|
|
t = dot(d, planeNormal) / denom;
|
|
res = (t >= 0);
|
|
}
|
|
|
|
return res;
|
|
}
|
|
|
|
bool RayPlaneSegmentIntersect(in float3 rayOrigin, in float3 rayDirection, float3 planeNormal, float planeDistance, inout float3 intersectionPoint)
|
|
{
|
|
float denom = dot(rayDirection, planeNormal);
|
|
float lambda = (denom != 0.0) ? (planeDistance - dot(rayOrigin, planeNormal)) / denom : -1.0;
|
|
if ((lambda >= 0.0) && (lambda <= 1.0))
|
|
{
|
|
intersectionPoint = rayOrigin + lambda * rayDirection;
|
|
return true;
|
|
}
|
|
else
|
|
return false;
|
|
}
|
|
|
|
// Can support cones with an elliptic base: pre-scale 'coneAxisX' and 'coneAxisY' by (h/r_x) and (h/r_y).
|
|
// Returns parametric distances 'tEntr' and 'tExit' along the ray,
|
|
// subject to constraints 'tMin' and 'tMax'.
|
|
bool IntersectRayCone(float3 rayOrigin, float3 rayDirection,
|
|
float3 coneOrigin, float3 coneDirection,
|
|
float3 coneAxisX, float3 coneAxisY,
|
|
float tMin, float tMax,
|
|
out float tEntr, out float tExit)
|
|
{
|
|
// Inverse transform the ray into a coordinate system with the cone at the origin facing along the Z axis.
|
|
float3x3 rotMat = float3x3(coneAxisX, coneAxisY, coneDirection);
|
|
|
|
float3 o = mul(rotMat, rayOrigin - coneOrigin);
|
|
float3 d = mul(rotMat, rayDirection);
|
|
|
|
// Cone equation (facing along Z): (h/r*x)^2 + (h/r*y)^2 - z^2 = 0.
|
|
// Cone axes are premultiplied with (h/r).
|
|
// Set up the quadratic equation: a*t^2 + b*t + c = 0.
|
|
float a = d.x * d.x + d.y * d.y - d.z * d.z;
|
|
float b = o.x * d.x + o.y * d.y - o.z * d.z;
|
|
float c = o.x * o.x + o.y * o.y - o.z * o.z;
|
|
|
|
float2 roots;
|
|
|
|
// Check whether we have at least 1 root.
|
|
bool hit = SolveQuadraticEquation(a, 2 * b, c, roots);
|
|
|
|
tEntr = roots.x;
|
|
tExit = roots.y;
|
|
float3 pEntr = o + tEntr * d;
|
|
float3 pExit = o + tExit * d;
|
|
|
|
// Clip the negative cone.
|
|
bool pEntrNeg = pEntr.z < 0;
|
|
bool pExitNeg = pExit.z < 0;
|
|
if (pEntrNeg && pExitNeg) { hit = false; }
|
|
if (pEntrNeg) { tEntr = tExit; tExit = tMax; }
|
|
if (pExitNeg) { tExit = tEntr; tEntr = tMin; }
|
|
|
|
// Clamp using the values passed into the function.
|
|
tEntr = clamp(tEntr, tMin, tMax);
|
|
tExit = clamp(tExit, tMin, tMax);
|
|
|
|
// Check for grazing intersections.
|
|
if (tEntr == tExit) { hit = false; }
|
|
|
|
return hit;
|
|
}
|
|
|
|
bool IntersectSphereAABB(float3 position, float radius, float3 aabbMin, float3 aabbMax)
|
|
{
|
|
float x = max(aabbMin.x, min(position.x, aabbMax.x));
|
|
float y = max(aabbMin.y, min(position.y, aabbMax.y));
|
|
float z = max(aabbMin.z, min(position.z, aabbMax.z));
|
|
float distance2 = ((x - position.x) * (x - position.x) + (y - position.y) * (y - position.y) + (z - position.z) * (z - position.z));
|
|
return distance2 < radius * radius;
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Miscellaneous functions
|
|
//-----------------------------------------------------------------------------
|
|
|
|
// Box is AABB
|
|
float DistancePointBox(float3 position, float3 boxMin, float3 boxMax)
|
|
{
|
|
return length(max(max(position - boxMax, boxMin - position), float3(0.0, 0.0, 0.0)));
|
|
}
|
|
|
|
float3 ProjectPointOnPlane(float3 position, float3 planePosition, float3 planeNormal)
|
|
{
|
|
return position - (dot(position - planePosition, planeNormal) * planeNormal);
|
|
}
|
|
|
|
// Plane equation: {(a, b, c) = N, d = -dot(N, P)}.
|
|
// Returns the distance from the plane to the point 'p' along the normal.
|
|
// Positive -> in front (above), negative -> behind (below).
|
|
float DistanceFromPlane(float3 p, float4 plane)
|
|
{
|
|
return dot(float4(p, 1.0), plane);
|
|
}
|
|
|
|
// Returns 'true' if the triangle is outside of the frustum.
|
|
// 'epsilon' is the (negative) distance to (outside of) the frustum below which we cull the triangle.
|
|
bool CullTriangleFrustum(float3 p0, float3 p1, float3 p2, float epsilon, float4 frustumPlanes[6], int numPlanes)
|
|
{
|
|
bool outside = false;
|
|
|
|
for (int i = 0; i < numPlanes; i++)
|
|
{
|
|
// If all 3 points are behind any of the planes, we cull.
|
|
outside = outside || Max3(DistanceFromPlane(p0, frustumPlanes[i]),
|
|
DistanceFromPlane(p1, frustumPlanes[i]),
|
|
DistanceFromPlane(p2, frustumPlanes[i])) < epsilon;
|
|
}
|
|
|
|
return outside;
|
|
}
|
|
|
|
// Returns 'true' if the edge of the triangle is outside of the frustum.
|
|
// The edges are defined s.t. they are on the opposite side of the point with the given index.
|
|
// 'epsilon' is the (negative) distance to (outside of) the frustum below which we cull the triangle.
|
|
//output packing:
|
|
// x,y,z - one component per triangle edge, true if outside, false otherwise
|
|
// w - true if entire triangle is outside of at least 1 plane of the frustum, false otherwise
|
|
bool4 CullFullTriangleAndEdgesFrustum(float3 p0, float3 p1, float3 p2, float epsilon, float4 frustumPlanes[6], int numPlanes)
|
|
{
|
|
bool4 edgesOutsideXYZ_triangleOutsideW = false;
|
|
|
|
for (int i = 0; i < numPlanes; i++)
|
|
{
|
|
bool3 pointsOutside = bool3(DistanceFromPlane(p0, frustumPlanes[i]) < epsilon,
|
|
DistanceFromPlane(p1, frustumPlanes[i]) < epsilon,
|
|
DistanceFromPlane(p2, frustumPlanes[i]) < epsilon);
|
|
|
|
bool3 edgesOutside;
|
|
// If both points of the edge are behind any of the planes, we cull.
|
|
edgesOutside.x = pointsOutside.y && pointsOutside.z;
|
|
edgesOutside.y = pointsOutside.x && pointsOutside.z;
|
|
edgesOutside.z = pointsOutside.x && pointsOutside.y;
|
|
|
|
edgesOutsideXYZ_triangleOutsideW = bool4(edgesOutsideXYZ_triangleOutsideW.x || edgesOutside.x,
|
|
edgesOutsideXYZ_triangleOutsideW.y || edgesOutside.y,
|
|
edgesOutsideXYZ_triangleOutsideW.z || edgesOutside.z,
|
|
all(pointsOutside));
|
|
}
|
|
|
|
return edgesOutsideXYZ_triangleOutsideW;
|
|
}
|
|
|
|
// Returns 'true' if the edge of the triangle is outside of the frustum.
|
|
// The edges are defined s.t. they are on the opposite side of the point with the given index.
|
|
// 'epsilon' is the (negative) distance to (outside of) the frustum below which we cull the triangle.
|
|
//output packing:
|
|
// x,y,z - one component per triangle edge, true if outside, false otherwise
|
|
bool3 CullTriangleEdgesFrustum(float3 p0, float3 p1, float3 p2, float epsilon, float4 frustumPlanes[6], int numPlanes)
|
|
{
|
|
return CullFullTriangleAndEdgesFrustum(p0, p1, p2, epsilon, frustumPlanes, numPlanes).xyz;
|
|
}
|
|
|
|
bool CullTriangleBackFaceView(float3 p0, float3 p1, float3 p2, float epsilon, float3 V, float winding)
|
|
{
|
|
float3 edge1 = p1 - p0;
|
|
float3 edge2 = p2 - p0;
|
|
|
|
float3 N = cross(edge1, edge2);
|
|
float NdotV = dot(N, V) * winding;
|
|
|
|
// Optimize:
|
|
// NdotV / (length(N) * length(V)) < Epsilon
|
|
// NdotV < Epsilon * length(N) * length(V)
|
|
// NdotV < Epsilon * sqrt(dot(N, N)) * sqrt(dot(V, V))
|
|
// NdotV < Epsilon * sqrt(dot(N, N) * dot(V, V))
|
|
return NdotV < epsilon * sqrt(dot(N, N) * dot(V, V));
|
|
}
|
|
|
|
// Returns 'true' if a triangle defined by 3 vertices is back-facing.
|
|
// 'epsilon' is the (negative) value of dot(N, V) below which we cull the triangle.
|
|
// 'winding' can be used to change the order: pass 1 for (p0 -> p1 -> p2), or -1 for (p0 -> p2 -> p1).
|
|
bool CullTriangleBackFace(float3 p0, float3 p1, float3 p2, float epsilon, float3 viewPos, float winding)
|
|
{
|
|
float3 V = viewPos - p0;
|
|
return CullTriangleBackFaceView(p0, p1, p2, epsilon, V, winding);
|
|
}
|
|
|
|
#endif // UNITY_GEOMETRICTOOLS_INCLUDED
|