Rasagar/Library/PackageCache/com.unity.mathematics/Unity.Mathematics/svd.cs

170 lines
6.5 KiB
C#
Raw Normal View History

2024-08-26 13:07:20 -07:00
using System.Runtime.CompilerServices;
using Unity.IL2CPP.CompilerServices;
namespace Unity.Mathematics
{
// SVD algorithm as described in:
// Computing the singular value decomposition of 3x3 matrices with minimal branching and elementary floating point operations,
// A.McAdams, A.Selle, R.Tamstorf, J.Teran and E.Sifakis, University of Wisconsin - Madison technical report TR1690, May 2011
[Il2CppEagerStaticClassConstruction]
static public class svd
{
[MethodImpl(MethodImplOptions.AggressiveInlining)]
static void condSwap(bool c, ref float x, ref float y)
{
var tmp = x;
x = math.select(x, y, c);
y = math.select(y, tmp, c);
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
static void condNegSwap(bool c, ref float3 x, ref float3 y)
{
var tmp = -x;
x = math.select(x, y, c);
y = math.select(y, tmp, c);
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
static quaternion condNegSwapQuat(bool c, quaternion q, float4 mask)
{
const float halfSqrt2 = 0.707106781186548f;
return math.mul(q, math.select(quaternion.identity.value, mask * halfSqrt2, c));
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
static void sortSingularValues(ref float3x3 b, ref quaternion v)
{
var l0 = math.lengthsq(b.c0);
var l1 = math.lengthsq(b.c1);
var l2 = math.lengthsq(b.c2);
var c = l0 < l1;
condNegSwap(c, ref b.c0, ref b.c1);
v = condNegSwapQuat(c, v, math.float4(0f, 0f, 1f, 1f));
condSwap(c, ref l0, ref l1);
c = l0 < l2;
condNegSwap(c, ref b.c0, ref b.c2);
v = condNegSwapQuat(c, v, math.float4(0f, -1f, 0f, 1f));
condSwap(c, ref l0, ref l2);
c = l1 < l2;
condNegSwap(c, ref b.c1, ref b.c2);
v = condNegSwapQuat(c, v, math.float4(1f, 0f, 0f, 1f));
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
static quaternion approxGivensQuat(float3 pq, float4 mask)
{
const float c8 = 0.923879532511287f; // cos(pi/8)
const float s8 = 0.38268343236509f; // sin(pi/8)
const float g = 5.82842712474619f; // 3 + 2 * sqrt(2)
var ch = 2f * (pq.x - pq.y); // approx cos(a/2)
var sh = pq.z; // approx sin(a/2)
var r = math.select(math.float4(s8, s8, s8, c8), math.float4(sh, sh, sh, ch), g * sh * sh < ch * ch) * mask;
return math.normalize(r);
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
static quaternion qrGivensQuat(float2 pq, float4 mask)
{
var l = math.sqrt(pq.x * pq.x + pq.y * pq.y);
var sh = math.select(0f, pq.y, l > k_EpsilonNormalSqrt);
var ch = math.abs(pq.x) + math.max(l, k_EpsilonNormalSqrt);
condSwap(pq.x < 0f, ref sh, ref ch);
return math.normalize(math.float4(sh, sh, sh, ch) * mask);
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
static quaternion givensQRFactorization(float3x3 b, out float3x3 r)
{
var u = qrGivensQuat(math.float2(b.c0.x, b.c0.y), math.float4(0f, 0f, 1f, 1f));
var qmt = math.float3x3(math.conjugate(u));
r = math.mul(qmt, b);
var q = qrGivensQuat(math.float2(r.c0.x, r.c0.z), math.float4(0f, -1f, 0f, 1f));
u = math.mul(u, q);
qmt = math.float3x3(math.conjugate(q));
r = math.mul(qmt, r);
q = qrGivensQuat(math.float2(r.c1.y, r.c1.z), math.float4(1f, 0f, 0f, 1f));
u = math.mul(u, q);
qmt = math.float3x3(math.conjugate(q));
r = math.mul(qmt, r);
return u;
}
static quaternion jacobiIteration(ref float3x3 s, int iterations = 5)
{
float3x3 qm;
quaternion q;
quaternion v = quaternion.identity;
for (int i = 0; i < iterations; ++i)
{
q = approxGivensQuat(math.float3(s.c0.x, s.c1.y, s.c0.y), math.float4(0f, 0f, 1f, 1f));
v = math.mul(v, q);
qm = math.float3x3(q);
s = math.mul(math.mul(math.transpose(qm), s), qm);
q = approxGivensQuat(math.float3(s.c1.y, s.c2.z, s.c1.z), math.float4(1f, 0f, 0f, 1f));
v = math.mul(v, q);
qm = math.float3x3(q);
s = math.mul(math.mul(math.transpose(qm), s), qm);
q = approxGivensQuat(math.float3(s.c2.z, s.c0.x, s.c2.x), math.float4(0f, 1f, 0f, 1f));
v = math.mul(v, q);
qm = math.float3x3(q);
s = math.mul(math.mul(math.transpose(qm), s), qm);
}
return v;
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
static float3 singularValuesDecomposition(float3x3 a, out quaternion u, out quaternion v)
{
u = quaternion.identity;
v = quaternion.identity;
var s = math.mul(math.transpose(a), a);
v = jacobiIteration(ref s);
var b = math.float3x3(v);
b = math.mul(a, b);
sortSingularValues(ref b, ref v);
u = givensQRFactorization(b, out var e);
return math.float3(e.c0.x, e.c1.y, e.c2.z);
}
public const float k_EpsilonDeterminant = 1e-6f;
public const float k_EpsilonRCP = 1e-9f;
public const float k_EpsilonNormalSqrt = 1e-15f;
public const float k_EpsilonNormal = 1e-30f;
[MethodImpl(MethodImplOptions.AggressiveInlining)]
static float3 rcpsafe(float3 x, float epsilon = k_EpsilonRCP) =>
math.select(math.rcp(x), float3.zero, math.abs(x) < epsilon);
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static float3x3 svdInverse(float3x3 a)
{
var e = singularValuesDecomposition(a, out var u, out var v);
var um = math.float3x3(u);
var vm = math.float3x3(v);
return math.mul(vm, math.scaleMul(rcpsafe(e, k_EpsilonDeterminant), math.transpose(um)));
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static quaternion svdRotation(float3x3 a)
{
singularValuesDecomposition(a, out var u, out var v);
return math.mul(u, math.conjugate(v));
}
}
}