#if !UNITY_2019_3_OR_NEWER #define CINEMACHINE_PHYSICS #endif using UnityEngine; using System.Collections.Generic; using Cinemachine.Utility; using UnityEngine.Serialization; using System; namespace Cinemachine { #if CINEMACHINE_PHYSICS /// /// An add-on module for Cinemachine Virtual Camera that post-processes /// the final position of the virtual camera. Based on the supplied settings, /// the Collider will attempt to preserve the line of sight /// with the LookAt target of the virtual camera by moving /// away from objects that will obstruct the view. /// /// Additionally, the Collider can be used to assess the shot quality and /// report this as a field in the camera State. /// [DocumentationSorting(DocumentationSortingAttribute.Level.UserRef)] [AddComponentMenu("")] // Hide in menu [SaveDuringPlay] [ExecuteAlways] [DisallowMultipleComponent] [HelpURL(Documentation.BaseURL + "manual/CinemachineCollider.html")] public class CinemachineCollider : CinemachineExtension { /// Objects on these layers will be detected. [Header("Obstacle Detection")] [Tooltip("Objects on these layers will be detected")] public LayerMask m_CollideAgainst = 1; /// Obstacles with this tag will be ignored. It is a good idea to set this field to the target's tag [TagField] [Tooltip("Obstacles with this tag will be ignored. It is a good idea to set this field to the target's tag")] public string m_IgnoreTag = string.Empty; /// Objects on these layers will never obstruct view of the target. [Tooltip("Objects on these layers will never obstruct view of the target")] public LayerMask m_TransparentLayers = 0; /// Obstacles closer to the target than this will be ignored [Tooltip("Obstacles closer to the target than this will be ignored")] public float m_MinimumDistanceFromTarget = 0.1f; /// /// When enabled, will attempt to resolve situations where the line of sight to the /// target is blocked by an obstacle /// [Space] [Tooltip("When enabled, will attempt to resolve situations where the line of sight " + "to the target is blocked by an obstacle")] [FormerlySerializedAs("m_PreserveLineOfSight")] public bool m_AvoidObstacles = true; /// /// The raycast distance to test for when checking if the line of sight to this camera's target is clear. /// [Tooltip("The maximum raycast distance when checking if the line of sight to this camera's target is clear. " + "If the setting is 0 or less, the current actual distance to target will be used.")] [FormerlySerializedAs("m_LineOfSightFeelerDistance")] public float m_DistanceLimit; /// /// Don't take action unless occlusion has lasted at least this long. /// [Tooltip("Don't take action unless occlusion has lasted at least this long.")] public float m_MinimumOcclusionTime; /// /// Camera will try to maintain this distance from any obstacle. /// Increase this value if you are seeing inside obstacles due to a large /// FOV on the camera. /// [Tooltip("Camera will try to maintain this distance from any obstacle. Try to keep this value small. " + "Increase it if you are seeing inside obstacles due to a large FOV on the camera.")] public float m_CameraRadius = 0.1f; /// The way in which the Collider will attempt to preserve sight of the target. public enum ResolutionStrategy { /// Camera will be pulled forward along its Z axis until it is in front of /// the nearest obstacle PullCameraForward, /// In addition to pulling the camera forward, an effort will be made to /// return the camera to its original height PreserveCameraHeight, /// In addition to pulling the camera forward, an effort will be made to /// return the camera to its original distance from the target PreserveCameraDistance }; /// The way in which the Collider will attempt to preserve sight of the target. [Tooltip("The way in which the Collider will attempt to preserve sight of the target.")] public ResolutionStrategy m_Strategy = ResolutionStrategy.PreserveCameraHeight; /// /// Upper limit on how many obstacle hits to process. Higher numbers may impact performance. /// In most environments, 4 is enough. /// [Range(1, 10)] [Tooltip("Upper limit on how many obstacle hits to process. Higher numbers may impact performance. " + "In most environments, 4 is enough.")] public int m_MaximumEffort = 4; /// /// Smoothing to apply to obstruction resolution. Nearest camera point is held for at least this long. /// [Range(0, 2)] [Tooltip("Smoothing to apply to obstruction resolution. Nearest camera point is held for at least this long")] public float m_SmoothingTime; /// /// How gradually the camera returns to its normal position after having been corrected. /// Higher numbers will move the camera more gradually back to normal. /// [Range(0, 10)] [Tooltip("How gradually the camera returns to its normal position after having been corrected. " + "Higher numbers will move the camera more gradually back to normal.")] [FormerlySerializedAs("m_Smoothing")] public float m_Damping; /// /// How gradually the camera moves to resolve an occlusion. /// Higher numbers will move the camera more gradually. /// [Range(0, 10)] [Tooltip("How gradually the camera moves to resolve an occlusion. " + "Higher numbers will move the camera more gradually.")] public float m_DampingWhenOccluded; /// If greater than zero, a higher score will be given to shots when the target is closer to /// this distance. Set this to zero to disable this feature [Header("Shot Evaluation")] [Tooltip("If greater than zero, a higher score will be given to shots when the target is closer to this distance. " + "Set this to zero to disable this feature.")] public float m_OptimalTargetDistance; /// See whether an object is blocking the camera's view of the target /// The virtual camera in question. This might be different from the /// virtual camera that owns the collider, in the event that the camera has children /// True if something is blocking the view public bool IsTargetObscured(ICinemachineCamera vcam) { return GetExtraState(vcam).targetObscured; } /// See whether the virtual camera has been moved nby the collider /// The virtual camera in question. This might be different from the /// virtual camera that owns the collider, in the event that the camera has children /// True if the virtual camera has been displaced due to collision or /// target obstruction public bool CameraWasDisplaced(ICinemachineCamera vcam) { return GetCameraDisplacementDistance(vcam) > 0; } /// See how far the virtual camera wa moved nby the collider /// The virtual camera in question. This might be different from the /// virtual camera that owns the collider, in the event that the camera has children /// True if the virtual camera has been displaced due to collision or /// target obstruction public float GetCameraDisplacementDistance(ICinemachineCamera vcam) { return GetExtraState(vcam).previousDisplacement.magnitude; } void OnValidate() { m_DistanceLimit = Mathf.Max(0, m_DistanceLimit); m_MinimumOcclusionTime = Mathf.Max(0, m_MinimumOcclusionTime); m_CameraRadius = Mathf.Max(0, m_CameraRadius); m_MinimumDistanceFromTarget = Mathf.Max(0.01f, m_MinimumDistanceFromTarget); m_OptimalTargetDistance = Mathf.Max(0, m_OptimalTargetDistance); } /// /// Cleanup /// protected override void OnDestroy() { RuntimeUtility.DestroyScratchCollider(); base.OnDestroy(); } /// This must be small but greater than 0 - reduces false results due to precision const float k_PrecisionSlush = 0.001f; /// /// Per-vcam extra state info /// class VcamExtraState { public Vector3 previousDisplacement; public Vector3 previousCameraOffset; public Vector3 previousCameraPosition; public float previousDampTime; public bool targetObscured; public float occlusionStartTime; public List debugResolutionPath; public void AddPointToDebugPath(Vector3 p) { #if UNITY_EDITOR if (debugResolutionPath == null) debugResolutionPath = new List(); debugResolutionPath.Add(p); #endif } // Thanks to Sebastien LeTouze from Exiin Studio for the smoothing idea float m_SmoothedDistance; float m_SmoothedTime; public float ApplyDistanceSmoothing(float distance, float smoothingTime) { if (m_SmoothedTime != 0 && smoothingTime > Epsilon) { float now = CinemachineCore.CurrentTime; if (now - m_SmoothedTime < smoothingTime) return Mathf.Min(distance, m_SmoothedDistance); } return distance; } public void UpdateDistanceSmoothing(float distance) { if (m_SmoothedDistance == 0 || distance < m_SmoothedDistance) { m_SmoothedDistance = distance; m_SmoothedTime = CinemachineCore.CurrentTime; } } public void ResetDistanceSmoothing(float smoothingTime) { float now = CinemachineCore.CurrentTime; if (now - m_SmoothedTime >= smoothingTime) m_SmoothedDistance = m_SmoothedTime = 0; } }; /// Inspector API for debugging collision resolution path public List> DebugPaths { get { List> list = new List>(); List extraStates = GetAllExtraStates(); foreach (var v in extraStates) if (v.debugResolutionPath != null && v.debugResolutionPath.Count > 0) list.Add(v.debugResolutionPath); return list; } } /// /// Report maximum damping time needed for this component. /// /// Highest damping setting in this component public override float GetMaxDampTime() { return Mathf.Max(m_Damping, Mathf.Max(m_DampingWhenOccluded, m_SmoothingTime)); } /// This is called to notify the extension that a target got warped, /// so that the extension can update its internal state to make the camera /// also warp seamlessy. Base class implementation does nothing. /// The object that was warped /// The amount the target's position changed public override void OnTargetObjectWarped(Transform target, Vector3 positionDelta) { var states = GetAllExtraStates(); for (int i = 0; i < states.Count; ++i) { var extra = states[i]; extra.previousCameraPosition += positionDelta; } } /// /// Callback to do the collision resolution and shot evaluation /// /// The virtual camera being processed /// The current pipeline stage /// The current virtual camera state /// The current applicable deltaTime protected override void PostPipelineStageCallback( CinemachineVirtualCameraBase vcam, CinemachineCore.Stage stage, ref CameraState state, float deltaTime) { if (stage == CinemachineCore.Stage.Body) { var extra = GetExtraState(vcam); extra.targetObscured = false; extra.debugResolutionPath?.RemoveRange(0, extra.debugResolutionPath.Count); if (m_AvoidObstacles) { var initialCamPos = state.CorrectedPosition; // Rotate the previous collision correction along with the camera var dampingBypass = Quaternion.Euler(state.PositionDampingBypass); extra.previousDisplacement = dampingBypass * extra.previousDisplacement; // Calculate the desired collision correction Vector3 displacement = PreserveLineOfSight(ref state, ref extra); if (m_MinimumOcclusionTime > Epsilon) { // If minimum occlusion time set, ignore new occlusions until they've lasted long enough float now = CinemachineCore.CurrentTime; if (displacement.AlmostZero()) extra.occlusionStartTime = 0; // no occlusion else { if (extra.occlusionStartTime <= 0) extra.occlusionStartTime = now; // occlusion timer starts now if (now - extra.occlusionStartTime < m_MinimumOcclusionTime) displacement = extra.previousDisplacement; } } // Apply distance smoothing - this can artificially hold the camera closer // to the target for a while, to reduce popping in and out on bumpy objects if (m_SmoothingTime > Epsilon && state.HasLookAt) { Vector3 pos = initialCamPos + displacement; Vector3 dir = pos - state.ReferenceLookAt; float distance = dir.magnitude; if (distance > Epsilon) { dir /= distance; if (!displacement.AlmostZero()) extra.UpdateDistanceSmoothing(distance); distance = extra.ApplyDistanceSmoothing(distance, m_SmoothingTime); displacement += (state.ReferenceLookAt + dir * distance) - pos; } } if (displacement.AlmostZero()) extra.ResetDistanceSmoothing(m_SmoothingTime); // Apply additional correction due to camera radius var cameraPos = initialCamPos + displacement; var lookAt = state.HasLookAt ? state.ReferenceLookAt : cameraPos; displacement += RespectCameraRadius(cameraPos, lookAt); // Apply damping float dampTime = m_DampingWhenOccluded; if (deltaTime >= 0 && VirtualCamera.PreviousStateIsValid && m_DampingWhenOccluded + m_Damping > Epsilon) { // To ease the transition between damped and undamped regions, we damp the damp time var dispSqrMag = displacement.sqrMagnitude; dampTime = dispSqrMag > extra.previousDisplacement.sqrMagnitude ? m_DampingWhenOccluded : m_Damping; if (dispSqrMag < Epsilon) dampTime = extra.previousDampTime - Damper.Damp(extra.previousDampTime, dampTime, deltaTime); if (dampTime > 0) { bool bodyAfterAim = false; if (vcam is CinemachineVirtualCamera) { var body = (vcam as CinemachineVirtualCamera).GetCinemachineComponent(CinemachineCore.Stage.Body); bodyAfterAim = body != null && body.BodyAppliesAfterAim; } var prevDisplacement = bodyAfterAim ? extra.previousDisplacement : lookAt + dampingBypass * extra.previousCameraOffset - initialCamPos; displacement = prevDisplacement + Damper.Damp(displacement - prevDisplacement, dampTime, deltaTime); } } state.PositionCorrection += displacement; cameraPos = state.CorrectedPosition; // Adjust the damping bypass to account for the displacement if (state.HasLookAt && VirtualCamera.PreviousStateIsValid) { var dir0 = extra.previousCameraPosition - state.ReferenceLookAt; var dir1 = cameraPos - state.ReferenceLookAt; if (dir0.sqrMagnitude > Epsilon && dir1.sqrMagnitude > Epsilon) state.PositionDampingBypass = UnityVectorExtensions.SafeFromToRotation( dir0, dir1, state.ReferenceUp).eulerAngles; } extra.previousDisplacement = displacement; extra.previousCameraOffset = cameraPos - lookAt; extra.previousCameraPosition = cameraPos; extra.previousDampTime = dampTime; } } // Rate the shot after the aim was set if (stage == CinemachineCore.Stage.Aim) { var extra = GetExtraState(vcam); extra.targetObscured = IsTargetOffscreen(state) || CheckForTargetObstructions(state); // GML these values are an initial arbitrary attempt at rating quality if (extra.targetObscured) state.ShotQuality *= 0.2f; if (!extra.previousDisplacement.AlmostZero()) state.ShotQuality *= 0.8f; float nearnessBoost = 0; const float kMaxNearBoost = 0.2f; if (m_OptimalTargetDistance > 0 && state.HasLookAt) { float distance = Vector3.Magnitude(state.ReferenceLookAt - state.FinalPosition); if (distance <= m_OptimalTargetDistance) { float threshold = m_OptimalTargetDistance / 2; if (distance >= threshold) nearnessBoost = kMaxNearBoost * (distance - threshold) / (m_OptimalTargetDistance - threshold); } else { distance -= m_OptimalTargetDistance; float threshold = m_OptimalTargetDistance * 3; if (distance < threshold) nearnessBoost = kMaxNearBoost * (1f - (distance / threshold)); } state.ShotQuality *= (1f + nearnessBoost); } } } Vector3 PreserveLineOfSight(ref CameraState state, ref VcamExtraState extra) { Vector3 displacement = Vector3.zero; if (state.HasLookAt && m_CollideAgainst != 0 && m_CollideAgainst != m_TransparentLayers) { Vector3 cameraPos = state.CorrectedPosition; Vector3 lookAtPos = state.ReferenceLookAt; RaycastHit hitInfo = new RaycastHit(); displacement = PullCameraInFrontOfNearestObstacle( cameraPos, lookAtPos, m_CollideAgainst & ~m_TransparentLayers, ref hitInfo); Vector3 pos = cameraPos + displacement; if (hitInfo.collider != null) { extra.AddPointToDebugPath(pos); if (m_Strategy != ResolutionStrategy.PullCameraForward) { Vector3 targetToCamera = cameraPos - lookAtPos; pos = PushCameraBack( pos, targetToCamera, hitInfo, lookAtPos, new Plane(state.ReferenceUp, cameraPos), targetToCamera.magnitude, m_MaximumEffort, ref extra); } } displacement = pos - cameraPos; } return displacement; } Vector3 PullCameraInFrontOfNearestObstacle( Vector3 cameraPos, Vector3 lookAtPos, int layerMask, ref RaycastHit hitInfo) { Vector3 displacement = Vector3.zero; Vector3 dir = cameraPos - lookAtPos; float targetDistance = dir.magnitude; if (targetDistance > Epsilon) { dir /= targetDistance; float minDistanceFromTarget = Mathf.Max(m_MinimumDistanceFromTarget, Epsilon); if (targetDistance < minDistanceFromTarget + Epsilon) displacement = dir * (minDistanceFromTarget - targetDistance); else { float rayLength = targetDistance - minDistanceFromTarget; if (m_DistanceLimit > Epsilon) rayLength = Mathf.Min(m_DistanceLimit, rayLength); // Make a ray that looks towards the camera, to get the obstacle closest to target Ray ray = new Ray(cameraPos - rayLength * dir, dir); rayLength += k_PrecisionSlush; if (rayLength > Epsilon) { if (m_Strategy == ResolutionStrategy.PullCameraForward && m_CameraRadius >= Epsilon) { if (RuntimeUtility.SphereCastIgnoreTag(lookAtPos + dir * m_CameraRadius, m_CameraRadius, dir, out hitInfo, rayLength - m_CameraRadius, layerMask, m_IgnoreTag)) { var desiredResult = hitInfo.point + hitInfo.normal * m_CameraRadius; displacement = desiredResult - cameraPos; } } else { if (RuntimeUtility.RaycastIgnoreTag(ray, out hitInfo, rayLength, layerMask, m_IgnoreTag)) { // Pull camera forward in front of obstacle float adjustment = Mathf.Max(0, hitInfo.distance - k_PrecisionSlush); displacement = ray.GetPoint(adjustment) - cameraPos; } } } } } return displacement; } Vector3 PushCameraBack( Vector3 currentPos, Vector3 pushDir, RaycastHit obstacle, Vector3 lookAtPos, Plane startPlane, float targetDistance, int iterations, ref VcamExtraState extra) { // Take a step along the wall. Vector3 pos = currentPos; Vector3 dir = Vector3.zero; if (!GetWalkingDirection(pos, pushDir, obstacle, ref dir)) return pos; Ray ray = new Ray(pos, dir); float distance = GetPushBackDistance(ray, startPlane, targetDistance, lookAtPos); if (distance <= Epsilon) return pos; // Check only as far as the obstacle bounds float clampedDistance = ClampRayToBounds(ray, distance, obstacle.collider.bounds); distance = Mathf.Min(distance, clampedDistance + k_PrecisionSlush); if (RuntimeUtility.RaycastIgnoreTag(ray, out var hitInfo, distance, m_CollideAgainst & ~m_TransparentLayers, m_IgnoreTag)) { // We hit something. Stop there and take a step along that wall. float adjustment = hitInfo.distance - k_PrecisionSlush; pos = ray.GetPoint(adjustment); extra.AddPointToDebugPath(pos); if (iterations > 1) pos = PushCameraBack( pos, dir, hitInfo, lookAtPos, startPlane, targetDistance, iterations-1, ref extra); return pos; } // Didn't hit anything. Can we push back all the way now? pos = ray.GetPoint(distance); // First check if we can still see the target. If not, abort dir = pos - lookAtPos; float d = dir.magnitude; if (d < Epsilon || RuntimeUtility.RaycastIgnoreTag( new Ray(lookAtPos, dir), out _, d - k_PrecisionSlush, m_CollideAgainst & ~m_TransparentLayers, m_IgnoreTag)) return currentPos; // All clear ray = new Ray(pos, dir); extra.AddPointToDebugPath(pos); distance = GetPushBackDistance(ray, startPlane, targetDistance, lookAtPos); if (distance > Epsilon) { if (!RuntimeUtility.RaycastIgnoreTag(ray, out hitInfo, distance, m_CollideAgainst & ~m_TransparentLayers, m_IgnoreTag)) { pos = ray.GetPoint(distance); // no obstacles - all good extra.AddPointToDebugPath(pos); } else { // We hit something. Stop there and maybe take a step along that wall float adjustment = hitInfo.distance - k_PrecisionSlush; pos = ray.GetPoint(adjustment); extra.AddPointToDebugPath(pos); if (iterations > 1) pos = PushCameraBack( pos, dir, hitInfo, lookAtPos, startPlane, targetDistance, iterations-1, ref extra); } } return pos; } RaycastHit[] m_CornerBuffer = new RaycastHit[4]; bool GetWalkingDirection( Vector3 pos, Vector3 pushDir, RaycastHit obstacle, ref Vector3 outDir) { Vector3 normal2 = obstacle.normal; // Check for nearby obstacles. Are we in a corner? float nearbyDistance = k_PrecisionSlush * 5; int numFound = Physics.SphereCastNonAlloc( pos, nearbyDistance, pushDir.normalized, m_CornerBuffer, 0, m_CollideAgainst & ~m_TransparentLayers, QueryTriggerInteraction.Ignore); if (numFound > 1) { // Calculate the second normal for (int i = 0; i < numFound; ++i) { if (m_CornerBuffer[i].collider == null) continue; if (m_IgnoreTag.Length > 0 && m_CornerBuffer[i].collider.CompareTag(m_IgnoreTag)) continue; Type type = m_CornerBuffer[i].collider.GetType(); if (type == typeof(BoxCollider) || type == typeof(SphereCollider) || type == typeof(CapsuleCollider)) { Vector3 p = m_CornerBuffer[i].collider.ClosestPoint(pos); Vector3 d = p - pos; if (d.magnitude > Vector3.kEpsilon) { if (m_CornerBuffer[i].collider.Raycast( new Ray(pos, d), out m_CornerBuffer[i], nearbyDistance)) { if (!(m_CornerBuffer[i].normal - obstacle.normal).AlmostZero()) normal2 = m_CornerBuffer[i].normal; break; } } } } } // Walk along the wall. If we're in a corner, walk their intersecting line Vector3 dir = Vector3.Cross(obstacle.normal, normal2); if (dir.AlmostZero()) dir = Vector3.ProjectOnPlane(pushDir, obstacle.normal); else { float dot = Vector3.Dot(dir, pushDir); if (Mathf.Abs(dot) < Epsilon) return false; if (dot < 0) dir = -dir; } if (dir.AlmostZero()) return false; outDir = dir.normalized; return true; } const float k_AngleThreshold = 0.1f; float GetPushBackDistance(Ray ray, Plane startPlane, float targetDistance, Vector3 lookAtPos) { float maxDistance = targetDistance - (ray.origin - lookAtPos).magnitude; if (maxDistance < Epsilon) return 0; if (m_Strategy == ResolutionStrategy.PreserveCameraDistance) return maxDistance; if (!startPlane.Raycast(ray, out var distance)) distance = 0; distance = Mathf.Min(maxDistance, distance); if (distance < Epsilon) return 0; // If we are close to parallel to the plane, we have to take special action float angle = Mathf.Abs(UnityVectorExtensions.Angle(startPlane.normal, ray.direction) - 90); if (angle < k_AngleThreshold) distance = Mathf.Lerp(0, distance, angle / k_AngleThreshold); return distance; } static float ClampRayToBounds(Ray ray, float distance, Bounds bounds) { float d; if (Vector3.Dot(ray.direction, Vector3.up) > 0) { if (new Plane(Vector3.down, bounds.max).Raycast(ray, out d) && d > Epsilon) distance = Mathf.Min(distance, d); } else if (Vector3.Dot(ray.direction, Vector3.down) > 0) { if (new Plane(Vector3.up, bounds.min).Raycast(ray, out d) && d > Epsilon) distance = Mathf.Min(distance, d); } if (Vector3.Dot(ray.direction, Vector3.right) > 0) { if (new Plane(Vector3.left, bounds.max).Raycast(ray, out d) && d > Epsilon) distance = Mathf.Min(distance, d); } else if (Vector3.Dot(ray.direction, Vector3.left) > 0) { if (new Plane(Vector3.right, bounds.min).Raycast(ray, out d) && d > Epsilon) distance = Mathf.Min(distance, d); } if (Vector3.Dot(ray.direction, Vector3.forward) > 0) { if (new Plane(Vector3.back, bounds.max).Raycast(ray, out d) && d > Epsilon) distance = Mathf.Min(distance, d); } else if (Vector3.Dot(ray.direction, Vector3.back) > 0) { if (new Plane(Vector3.forward, bounds.min).Raycast(ray, out d) && d > Epsilon) distance = Mathf.Min(distance, d); } return distance; } static Collider[] s_ColliderBuffer = new Collider[5]; Vector3 RespectCameraRadius(Vector3 cameraPos, Vector3 lookAtPos) { Vector3 result = Vector3.zero; if (m_CameraRadius < Epsilon || m_CollideAgainst == 0) return result; Vector3 dir = cameraPos - lookAtPos; float distance = dir.magnitude; if (distance > Epsilon) dir /= distance; // Pull it out of any intersecting obstacles RaycastHit hitInfo; int numObstacles = Physics.OverlapSphereNonAlloc( cameraPos, m_CameraRadius, s_ColliderBuffer, m_CollideAgainst, QueryTriggerInteraction.Ignore); if (numObstacles == 0 && m_TransparentLayers != 0 && distance > m_MinimumDistanceFromTarget + Epsilon) { // Make sure the camera position isn't completely inside an obstacle. // OverlapSphereNonAlloc won't catch those. float d = distance - m_MinimumDistanceFromTarget; Vector3 targetPos = lookAtPos + dir * m_MinimumDistanceFromTarget; if (RuntimeUtility.RaycastIgnoreTag(new Ray(targetPos, dir), out hitInfo, d, m_CollideAgainst, m_IgnoreTag)) { // Only count it if there's an incoming collision but not an outgoing one Collider c = hitInfo.collider; if (!c.Raycast(new Ray(cameraPos, -dir), out hitInfo, d)) s_ColliderBuffer[numObstacles++] = c; } } if (numObstacles > 0 && distance == 0 || distance > m_MinimumDistanceFromTarget) { var scratchCollider = RuntimeUtility.GetScratchCollider(); scratchCollider.radius = m_CameraRadius; Vector3 newCamPos = cameraPos; for (int i = 0; i < numObstacles; ++i) { Collider c = s_ColliderBuffer[i]; if (m_IgnoreTag.Length > 0 && c.CompareTag(m_IgnoreTag)) continue; // If we have a lookAt target, move the camera to the nearest edge of obstacle if (distance > m_MinimumDistanceFromTarget) { dir = newCamPos - lookAtPos; float d = dir.magnitude; if (d > Epsilon) { dir /= d; var ray = new Ray(lookAtPos, dir); if (c.Raycast(ray, out hitInfo, d + m_CameraRadius)) newCamPos = ray.GetPoint(hitInfo.distance) - (dir * k_PrecisionSlush); } } if (Physics.ComputePenetration( scratchCollider, newCamPos, Quaternion.identity, c, c.transform.position, c.transform.rotation, out var offsetDir, out var offsetDistance)) { newCamPos += offsetDir * offsetDistance; } } result = newCamPos - cameraPos; } // Respect the minimum distance from target - push camera back if we have to if (distance > Epsilon && m_MinimumDistanceFromTarget > Epsilon) { float minDistance = Mathf.Max(m_MinimumDistanceFromTarget, m_CameraRadius) + k_PrecisionSlush; Vector3 newOffset = cameraPos + result - lookAtPos; if (newOffset.magnitude < minDistance) result = lookAtPos - cameraPos + dir * minDistance; } return result; } bool CheckForTargetObstructions(CameraState state) { if (state.HasLookAt) { Vector3 lookAtPos = state.ReferenceLookAt; Vector3 pos = state.CorrectedPosition; Vector3 dir = lookAtPos - pos; float distance = dir.magnitude; if (distance < Mathf.Max(m_MinimumDistanceFromTarget, Epsilon)) return true; Ray ray = new Ray(pos, dir.normalized); if (RuntimeUtility.RaycastIgnoreTag(ray, out _, distance - m_MinimumDistanceFromTarget, m_CollideAgainst & ~m_TransparentLayers, m_IgnoreTag)) return true; } return false; } static bool IsTargetOffscreen(CameraState state) { if (state.HasLookAt) { Vector3 dir = state.ReferenceLookAt - state.CorrectedPosition; dir = Quaternion.Inverse(state.CorrectedOrientation) * dir; if (state.Lens.Orthographic) { if (Mathf.Abs(dir.y) > state.Lens.OrthographicSize) return true; if (Mathf.Abs(dir.x) > state.Lens.OrthographicSize * state.Lens.Aspect) return true; } else { float fov = state.Lens.FieldOfView / 2; float angle = UnityVectorExtensions.Angle(dir.ProjectOntoPlane(Vector3.right), Vector3.forward); if (angle > fov) return true; fov = Mathf.Rad2Deg * Mathf.Atan(Mathf.Tan(fov * Mathf.Deg2Rad) * state.Lens.Aspect); angle = UnityVectorExtensions.Angle(dir.ProjectOntoPlane(Vector3.up), Vector3.forward); if (angle > fov) return true; } } return false; } } #endif }