using System;
using System.Diagnostics;
using System.Runtime.InteropServices;
using Unity.Collections.LowLevel.Unsafe;
using Unity.Burst;
using Unity.Burst.CompilerServices;
using Unity.Jobs;
using Unity.Jobs.LowLevel.Unsafe;
using Unity.Mathematics;
using System.Reflection;
using System.Runtime.CompilerServices;
namespace Unity.Collections
{
///
/// For scheduling release of unmanaged resources.
///
public interface INativeDisposable : IDisposable
{
///
/// Creates and schedules a job that will release all resources (memory and safety handles) of this collection.
///
/// A job handle which the newly scheduled job will depend upon.
/// The handle of a new job that will release all resources (memory and safety handles) of this collection.
JobHandle Dispose(JobHandle inputDeps);
}
///
/// Provides helper methods for collections.
///
[GenerateTestsForBurstCompatibility]
public static class CollectionHelper
{
[Conditional("ENABLE_UNITY_COLLECTIONS_CHECKS"), Conditional("UNITY_DOTS_DEBUG")]
internal static void CheckAllocator(AllocatorManager.AllocatorHandle allocator)
{
if (!ShouldDeallocate(allocator))
throw new ArgumentException($"Allocator {allocator} must not be None or Invalid");
}
///
/// The size in bytes of the current platform's L1 cache lines.
///
/// The size in bytes of the current platform's L1 cache lines.
public const int CacheLineSize = JobsUtility.CacheLineSize;
[StructLayout(LayoutKind.Explicit)]
internal struct LongDoubleUnion
{
[FieldOffset(0)]
internal long longValue;
[FieldOffset(0)]
internal double doubleValue;
}
///
/// Returns the binary logarithm of the `value`, but the result is rounded down to the nearest integer.
///
/// The value.
/// The binary logarithm of the `value`, but the result is rounded down to the nearest integer.
public static int Log2Floor(int value)
{
return 31 - math.lzcnt((uint)value);
}
///
/// Returns the binary logarithm of the `value`, but the result is rounded up to the nearest integer.
///
/// The value.
/// The binary logarithm of the `value`, but the result is rounded up to the nearest integer.
public static int Log2Ceil(int value)
{
return 32 - math.lzcnt((uint)value - 1);
}
///
/// Returns an allocation size in bytes that factors in alignment.
///
///
/// // 55 aligned to 16 is 64.
/// int size = CollectionHelper.Align(55, 16);
///
/// The size to align.
/// A non-zero, positive power of two.
/// The smallest integer that is greater than or equal to `size` and is a multiple of `alignmentPowerOfTwo`.
/// Thrown if `alignmentPowerOfTwo` is not a non-zero, positive power of two.
public static int Align(int size, int alignmentPowerOfTwo)
{
if (alignmentPowerOfTwo == 0)
return size;
CheckIntPositivePowerOfTwo(alignmentPowerOfTwo);
return (size + alignmentPowerOfTwo - 1) & ~(alignmentPowerOfTwo - 1);
}
///
/// Returns an allocation size in bytes that factors in alignment.
///
///
/// // 55 aligned to 16 is 64.
/// ulong size = CollectionHelper.Align(55, 16);
///
/// The size to align.
/// A non-zero, positive power of two.
/// The smallest integer that is greater than or equal to `size` and is a multiple of `alignmentPowerOfTwo`.
/// Thrown if `alignmentPowerOfTwo` is not a non-zero, positive power of two.
public static ulong Align(ulong size, ulong alignmentPowerOfTwo)
{
if (alignmentPowerOfTwo == 0)
return size;
CheckUlongPositivePowerOfTwo(alignmentPowerOfTwo);
return (size + alignmentPowerOfTwo - 1) & ~(alignmentPowerOfTwo - 1);
}
///
/// Returns true if the address represented by the pointer has a given alignment.
///
/// The pointer.
/// A non-zero, positive power of two.
/// True if the address is a multiple of `alignmentPowerOfTwo`.
/// Thrown if `alignmentPowerOfTwo` is not a non-zero, positive power of two.
public static unsafe bool IsAligned(void* p, int alignmentPowerOfTwo)
{
CheckIntPositivePowerOfTwo(alignmentPowerOfTwo);
return ((ulong)p & ((ulong)alignmentPowerOfTwo - 1)) == 0;
}
///
/// Returns true if an offset has a given alignment.
///
/// An offset
/// A non-zero, positive power of two.
/// True if the offset is a multiple of `alignmentPowerOfTwo`.
/// Thrown if `alignmentPowerOfTwo` is not a non-zero, positive power of two.
public static bool IsAligned(ulong offset, int alignmentPowerOfTwo)
{
CheckIntPositivePowerOfTwo(alignmentPowerOfTwo);
return (offset & ((ulong)alignmentPowerOfTwo - 1)) == 0;
}
///
/// Returns true if a positive value is a non-zero power of two.
///
/// Result is invalid if `value < 0`.
/// A positive value.
/// True if the value is a non-zero, positive power of two.
public static bool IsPowerOfTwo(int value)
{
return (value & (value - 1)) == 0;
}
///
/// Returns a (non-cryptographic) hash of a memory block.
///
/// The hash function used is [djb2](http://web.archive.org/web/20190508211657/http://www.cse.yorku.ca/~oz/hash.html).
/// A buffer.
/// The number of bytes to hash.
/// A hash of the bytes.
public static unsafe uint Hash(void* ptr, int bytes)
{
// djb2 - Dan Bernstein hash function
// http://web.archive.org/web/20190508211657/http://www.cse.yorku.ca/~oz/hash.html
byte* str = (byte*)ptr;
ulong hash = 5381;
while (bytes > 0)
{
ulong c = str[--bytes];
hash = ((hash << 5) + hash) + c;
}
return (uint)hash;
}
[ExcludeFromBurstCompatTesting("Used only for debugging, and uses managed strings")]
internal static void WriteLayout(Type type)
{
Console.WriteLine($" Offset | Bytes | Name Layout: {0}", type.Name);
var fields = type.GetFields(BindingFlags.Public | BindingFlags.NonPublic | BindingFlags.Instance);
foreach (var field in fields)
{
Console.WriteLine(" {0, 6} | {1, 6} | {2}"
, Marshal.OffsetOf(type, field.Name)
, Marshal.SizeOf(field.FieldType)
, field.Name
);
}
}
internal static bool ShouldDeallocate(AllocatorManager.AllocatorHandle allocator)
{
// Allocator.Invalid == container is not initialized.
// Allocator.None == container is initialized, but container doesn't own data.
return allocator.ToAllocator > Allocator.None;
}
///
/// Tell Burst that an integer can be assumed to map to an always positive value.
///
/// The integer that is always positive.
/// Returns `x`, but allows the compiler to assume it is always positive.
[return: AssumeRange(0, int.MaxValue)]
[MethodImpl(MethodImplOptions.AggressiveInlining)]
internal static int AssumePositive(int value)
{
return value;
}
[Conditional("ENABLE_UNITY_COLLECTIONS_CHECKS"), Conditional("UNITY_DOTS_DEBUG")]
[GenerateTestsForBurstCompatibility(RequiredUnityDefine = "ENABLE_UNITY_COLLECTIONS_CHECKS", GenericTypeArguments = new[] { typeof(NativeArray) })]
internal static void CheckIsUnmanaged()
{
if (!UnsafeUtility.IsUnmanaged())
{
throw new ArgumentException($"{typeof(T)} used in native collection is not blittable or not primitive");
}
}
#if ENABLE_UNITY_COLLECTIONS_CHECKS
[GenerateTestsForBurstCompatibility(RequiredUnityDefine = "ENABLE_UNITY_COLLECTIONS_CHECKS", GenericTypeArguments = new[] { typeof(NativeArray) })]
internal static void InitNativeContainer(AtomicSafetyHandle handle)
{
if (UnsafeUtility.IsNativeContainerType())
AtomicSafetyHandle.SetNestedContainer(handle, true);
}
#endif
[Conditional("ENABLE_UNITY_COLLECTIONS_CHECKS"), Conditional("UNITY_DOTS_DEBUG")]
internal static void CheckIntPositivePowerOfTwo(int value)
{
var valid = (value > 0) && ((value & (value - 1)) == 0);
if (!valid)
{
throw new ArgumentException($"Alignment requested: {value} is not a non-zero, positive power of two.");
}
}
[Conditional("ENABLE_UNITY_COLLECTIONS_CHECKS"), Conditional("UNITY_DOTS_DEBUG")]
internal static void CheckUlongPositivePowerOfTwo(ulong value)
{
var valid = (value > 0) && ((value & (value - 1)) == 0);
if (!valid)
{
throw new ArgumentException($"Alignment requested: {value} is not a non-zero, positive power of two.");
}
}
[Conditional("ENABLE_UNITY_COLLECTIONS_CHECKS"), Conditional("UNITY_DOTS_DEBUG")]
[MethodImpl(MethodImplOptions.AggressiveInlining)]
internal static void CheckIndexInRange(int index, int length)
{
// This checks both < 0 and >= Length with one comparison
if ((uint)index >= (uint)length)
throw new IndexOutOfRangeException($"Index {index} is out of range in container of '{length}' Length.");
}
[Conditional("ENABLE_UNITY_COLLECTIONS_CHECKS"), Conditional("UNITY_DOTS_DEBUG")]
internal static void CheckCapacityInRange(int capacity, int length)
{
if (capacity < 0)
throw new ArgumentOutOfRangeException($"Capacity {capacity} must be positive.");
if (capacity < length)
throw new ArgumentOutOfRangeException($"Capacity {capacity} is out of range in container of '{length}' Length.");
}
///
/// Create a NativeArray, using a provided allocator that implements IAllocator.
///
/// The type of the elements.
/// The type of allocator.
/// The number of elements to allocate.
/// The allocator to use.
/// Options for allocation, such as whether to clear the memory.
/// Returns the NativeArray that was created.
[GenerateTestsForBurstCompatibility(GenericTypeArguments = new[] { typeof(int), typeof(AllocatorManager.AllocatorHandle) })]
public static NativeArray CreateNativeArray(int length, ref U allocator, NativeArrayOptions options = NativeArrayOptions.ClearMemory)
where T : unmanaged
where U : unmanaged, AllocatorManager.IAllocator
{
NativeArray nativeArray;
if (!allocator.IsCustomAllocator)
{
nativeArray = new NativeArray(length, allocator.ToAllocator, options);
}
else
{
nativeArray = new NativeArray();
nativeArray.Initialize(length, ref allocator, options);
}
return nativeArray;
}
///
/// Create a NativeArray, using a provided AllocatorHandle.
///
/// The type of the elements.
/// The number of elements to allocate.
/// The AllocatorHandle to use.
/// Options for allocation, such as whether to clear the memory.
/// Returns the NativeArray that was created.
[GenerateTestsForBurstCompatibility(GenericTypeArguments = new[] { typeof(int) })]
public static NativeArray CreateNativeArray(int length, AllocatorManager.AllocatorHandle allocator, NativeArrayOptions options = NativeArrayOptions.ClearMemory)
where T : unmanaged
{
NativeArray nativeArray;
if(!AllocatorManager.IsCustomAllocator(allocator))
{
nativeArray = new NativeArray(length, allocator.ToAllocator, options);
}
else
{
nativeArray = new NativeArray();
nativeArray.Initialize(length, allocator, options);
}
return nativeArray;
}
///
/// Create a NativeArray from another NativeArray, using a provided AllocatorHandle.
///
/// The type of the elements.
/// The NativeArray to make a copy of.
/// The AllocatorHandle to use.
/// Returns the NativeArray that was created.
[GenerateTestsForBurstCompatibility(GenericTypeArguments = new[] { typeof(int) })]
public static NativeArray CreateNativeArray(NativeArray array, AllocatorManager.AllocatorHandle allocator)
where T : unmanaged
{
NativeArray nativeArray;
if (!AllocatorManager.IsCustomAllocator(allocator))
{
nativeArray = new NativeArray(array, allocator.ToAllocator);
}
else
{
nativeArray = new NativeArray();
nativeArray.Initialize(array.Length, allocator);
nativeArray.CopyFrom(array);
}
return nativeArray;
}
///
/// Create a NativeArray from a managed array, using a provided AllocatorHandle.
///
/// The type of the elements.
/// The managed array to make a copy of.
/// The AllocatorHandle to use.
/// Returns the NativeArray that was created.
[ExcludeFromBurstCompatTesting("Managed array")]
public static NativeArray CreateNativeArray(T[] array, AllocatorManager.AllocatorHandle allocator)
where T : unmanaged
{
NativeArray nativeArray;
if (!AllocatorManager.IsCustomAllocator(allocator))
{
nativeArray = new NativeArray(array, allocator.ToAllocator);
}
else
{
nativeArray = new NativeArray();
nativeArray.Initialize(array.Length, allocator);
nativeArray.CopyFrom(array);
}
return nativeArray;
}
///
/// Create a NativeArray from a managed array, using a provided Allocator.
///
/// The type of the elements.
/// The type of allocator.
/// The managed array to make a copy of.
/// The Allocator to use.
/// Returns the NativeArray that was created.
[ExcludeFromBurstCompatTesting("Managed array")]
public static NativeArray CreateNativeArray(T[] array, ref U allocator)
where T : unmanaged
where U : unmanaged, AllocatorManager.IAllocator
{
NativeArray nativeArray;
if (!allocator.IsCustomAllocator)
{
nativeArray = new NativeArray(array, allocator.ToAllocator);
}
else
{
nativeArray = new NativeArray();
nativeArray.Initialize(array.Length, ref allocator);
nativeArray.CopyFrom(array);
}
return nativeArray;
}
///
/// Dispose a NativeArray from an AllocatorHandle where it is allocated.
///
/// The type of the elements.
/// The NativeArray to make a copy of.
/// The AllocatorHandle used to allocate the NativeArray.
[GenerateTestsForBurstCompatibility(GenericTypeArguments = new[] { typeof(int) })]
public static void DisposeNativeArray(NativeArray nativeArray, AllocatorManager.AllocatorHandle allocator)
where T : unmanaged
{
nativeArray.DisposeCheckAllocator();
}
///
/// Dispose a NativeArray from an AllocatorHandle where it is allocated.
///
/// The type of the elements.
/// The NativeArray to be disposed.
[GenerateTestsForBurstCompatibility(GenericTypeArguments = new[] { typeof(int) })]
public static void Dispose(NativeArray nativeArray)
where T : unmanaged
{
nativeArray.DisposeCheckAllocator();
}
[Conditional("ENABLE_UNITY_COLLECTIONS_CHECKS"), Conditional("UNITY_DOTS_DEBUG")]
static void CheckConvertArguments(int length) where T : unmanaged
{
if (length < 0)
throw new ArgumentOutOfRangeException(nameof(length), "Length must be >= 0");
if (!UnsafeUtility.IsUnmanaged())
{
throw new InvalidOperationException(
$"{typeof(T)} used in NativeArray<{typeof(T)}> must be unmanaged (contain no managed types).");
}
}
#if ENABLE_UNITY_COLLECTIONS_CHECKS
[Conditional("ENABLE_UNITY_COLLECTIONS_CHECKS")]
static void InitNestedNativeContainer(AtomicSafetyHandle handle)
where T : unmanaged
{
if (UnsafeUtility.IsNativeContainerType())
{
AtomicSafetyHandle.SetNestedContainer(handle, true);
}
}
#endif
///
/// Convert existing data into a NativeArray.
///
/// The type of the elements.
/// Pointer to the data to be converted.
/// The count of elements.
/// The Allocator to use.
/// Use temporary memory atomic safety handle.
/// Returns the NativeArray that was created.
/// The caller is still the owner of the data.
[GenerateTestsForBurstCompatibility(GenericTypeArguments = new[] { typeof(int) })]
public static unsafe NativeArray ConvertExistingDataToNativeArray(void* dataPointer, int length, AllocatorManager.AllocatorHandle allocator, bool setTempMemoryHandle = false)
where T : unmanaged
{
#if ENABLE_UNITY_COLLECTIONS_CHECKS || UNITY_DOTS_DEBUG
CheckConvertArguments(length);
#endif
NativeArray nativeArray = default;
nativeArray.m_Buffer = dataPointer;
nativeArray.m_Length = length;
if (!allocator.IsCustomAllocator)
{
nativeArray.m_AllocatorLabel = allocator.ToAllocator;
}
else
{
nativeArray.m_AllocatorLabel = Allocator.None;
}
#if ENABLE_UNITY_COLLECTIONS_CHECKS
nativeArray.m_MinIndex = 0;
nativeArray.m_MaxIndex = length - 1;
if (setTempMemoryHandle)
{
NativeArrayUnsafeUtility.SetAtomicSafetyHandle(ref nativeArray, AtomicSafetyHandle.GetTempMemoryHandle());
}
#endif
return nativeArray;
}
///
/// Convert NativeList into a NativeArray.
///
/// The type of the elements.
/// NativeList to be converted.
/// The count of elements.
/// The Allocator to use.
/// Returns the NativeArray that was created.
/// There is a caveat if users would like to transfer memory ownership from the NativeList to the converted NativeArray.
/// NativeList implementation includes two memory allocations, one holds its header, another holds the list data.
/// After convertion, the converted NativeArray holds the list data and dispose the array only free the list data.
/// Users need to manually free the list header to avoid memory leaks, for example after convertion call,
/// AllocatorManager.Free(allocator, nativeList.m_ListData);
[GenerateTestsForBurstCompatibility(GenericTypeArguments = new[] { typeof(int) })]
public static unsafe NativeArray ConvertExistingNativeListToNativeArray(ref NativeList nativeList, int length, AllocatorManager.AllocatorHandle allocator)
where T : unmanaged
{
NativeArray nativeArray = ConvertExistingDataToNativeArray(nativeList.GetUnsafePtr(), length, allocator);
#if ENABLE_UNITY_COLLECTIONS_CHECKS
var safetyHandle = NativeListUnsafeUtility.GetAtomicSafetyHandle(ref nativeList);
NativeArrayUnsafeUtility.SetAtomicSafetyHandle(ref nativeArray, safetyHandle);
InitNestedNativeContainer(nativeArray.m_Safety);
#endif
return nativeArray;
}
#if ENABLE_UNITY_COLLECTIONS_CHECKS
[GenerateTestsForBurstCompatibility(GenericTypeArguments = new[] { typeof(int) }, RequiredUnityDefine = "ENABLE_UNITY_COLLECTIONS_CHECKS", CompileTarget = GenerateTestsForBurstCompatibilityAttribute.BurstCompatibleCompileTarget.Editor)]
internal static AtomicSafetyHandle GetNativeArraySafetyHandle(ref NativeArray nativeArray)
where T : unmanaged
{
return nativeArray.m_Safety;
}
#endif
///
/// Create a NativeParallelMultiHashMap from a managed array, using a provided Allocator.
///
/// The type of the keys.
/// The type of the values.
/// The type of allocator.
/// The desired capacity of the NativeParallelMultiHashMap.
/// The Allocator to use.
/// Returns the NativeParallelMultiHashMap that was created.
[GenerateTestsForBurstCompatibility(GenericTypeArguments = new[] { typeof(int), typeof(int), typeof(AllocatorManager.AllocatorHandle) })]
public static NativeParallelMultiHashMap CreateNativeParallelMultiHashMap(int length, ref U allocator)
where TKey : unmanaged, IEquatable
where TValue : unmanaged
where U : unmanaged, AllocatorManager.IAllocator
{
var container = new NativeParallelMultiHashMap();
container.Initialize(length, ref allocator);
return container;
}
///
/// Empty job type used for Burst compilation testing
///
[BurstCompile]
public struct DummyJob : IJob
{
///
/// Empty job execute function used for Burst compilation testing
///
public void Execute()
{
}
}
///
/// Checks that reflection data was properly registered for a job.
///
/// This should be called before instantiating JobsUtility.JobScheduleParameters in order to report to the user if they need to take action.
/// The reflection data pointer.
/// Job type
[GenerateTestsForBurstCompatibility(RequiredUnityDefine = "ENABLE_UNITY_COLLECTIONS_CHECKS",
GenericTypeArguments = new[] { typeof(DummyJob) })]
[Conditional("ENABLE_UNITY_COLLECTIONS_CHECKS"), Conditional("UNITY_DOTS_DEBUG")]
public static void CheckReflectionDataCorrect(IntPtr reflectionData)
{
#if ENABLE_UNITY_COLLECTIONS_CHECKS || UNITY_DOTS_DEBUG
bool burstCompiled = true;
CheckReflectionDataCorrectInternal(reflectionData, ref burstCompiled);
if (burstCompiled && reflectionData == IntPtr.Zero)
throw new InvalidOperationException("Reflection data was not set up by an Initialize() call. For generic job types, please include [assembly: RegisterGenericJobType(typeof(MyJob))] in your source file.");
#endif
}
#if ENABLE_UNITY_COLLECTIONS_CHECKS
///
/// Creates a new AtomicSafetyHandle that is valid until [[CollectionHelper.DisposeSafetyHandle]] is called.
///
/// The AllocatorHandle to use.
/// Safety handle.
[GenerateTestsForBurstCompatibility(RequiredUnityDefine = "ENABLE_UNITY_COLLECTIONS_CHECKS")]
public static AtomicSafetyHandle CreateSafetyHandle(AllocatorManager.AllocatorHandle allocator)
{
if (allocator.IsCustomAllocator)
{
return AtomicSafetyHandle.Create();
}
return (allocator.ToAllocator == Allocator.Temp) ? AtomicSafetyHandle.GetTempMemoryHandle() : AtomicSafetyHandle.Create();
}
///
/// Disposes a previously created AtomicSafetyHandle.
///
/// Safety handle.
[GenerateTestsForBurstCompatibility(RequiredUnityDefine = "ENABLE_UNITY_COLLECTIONS_CHECKS")]
public static void DisposeSafetyHandle(ref AtomicSafetyHandle handle)
{
AtomicSafetyHandle.CheckDeallocateAndThrow(handle);
// If the safety handle is for a temp allocation, create a new safety handle for this instance which can be marked as invalid
// Setting it to new AtomicSafetyHandle is not enough since the handle needs a valid node pointer in order to give the correct errors
if (AtomicSafetyHandle.IsTempMemoryHandle(handle))
{
int staticSafetyId = handle.staticSafetyId;
handle = AtomicSafetyHandle.Create();
handle.staticSafetyId = staticSafetyId;
}
AtomicSafetyHandle.Release(handle);
}
static unsafe void CreateStaticSafetyIdInternal(ref int id, in FixedString512Bytes name)
{
id = AtomicSafetyHandle.NewStaticSafetyId(name.GetUnsafePtr(), name.Length);
}
[BurstDiscard]
static void CreateStaticSafetyIdInternal(ref int id)
{
CreateStaticSafetyIdInternal(ref id, typeof(T).ToString());
}
///
/// Assigns the provided static safety ID to an [[AtomicSafetyHandle]]. The ID's owner type name and any custom error messages are used by the job debugger when reporting errors involving the target handle.
///
/// This is preferable to AtomicSafetyHandle.NewStaticSafetyId as it is compatible with burst.
/// Type of container safety handle refers to.
/// Safety handle.
/// The static safety ID to associate with the provided handle. This ID must have been allocated with ::ref::NewStaticSafetyId.
[GenerateTestsForBurstCompatibility(RequiredUnityDefine = "ENABLE_UNITY_COLLECTIONS_CHECKS", GenericTypeArguments = new[] { typeof(NativeArray) })]
public static void SetStaticSafetyId(ref AtomicSafetyHandle handle, ref int sharedStaticId)
{
if (sharedStaticId == 0)
{
// This will eventually either work with burst supporting a subset of typeof()
// or something similar to Burst.BurstRuntime.GetTypeName() will be implemented
// JIRA issue DOTS-5685
CreateStaticSafetyIdInternal(ref sharedStaticId);
}
AtomicSafetyHandle.SetStaticSafetyId(ref handle, sharedStaticId);
}
///
/// Assigns the provided static safety ID to an [[AtomicSafetyHandle]]. The ID's owner type name and any custom error messages are used by the job debugger when reporting errors involving the target handle.
///
/// This is preferable to AtomicSafetyHandle.NewStaticSafetyId as it is compatible with burst.
/// Safety handle.
/// The static safety ID to associate with the provided handle. This ID must have been allocated with ::ref::NewStaticSafetyId.
/// The name of the resource type.
[GenerateTestsForBurstCompatibility(RequiredUnityDefine = "ENABLE_UNITY_COLLECTIONS_CHECKS")]
public static unsafe void SetStaticSafetyId(ref AtomicSafetyHandle handle, ref int sharedStaticId, FixedString512Bytes name)
{
if (sharedStaticId == 0)
{
CreateStaticSafetyIdInternal(ref sharedStaticId, name);
}
AtomicSafetyHandle.SetStaticSafetyId(ref handle, sharedStaticId);
}
#endif
[Conditional("ENABLE_UNITY_COLLECTIONS_CHECKS"), Conditional("UNITY_DOTS_DEBUG")]
[BurstDiscard]
static void CheckReflectionDataCorrectInternal(IntPtr reflectionData, ref bool burstCompiled)
{
if (reflectionData == IntPtr.Zero)
throw new InvalidOperationException($"Reflection data was not set up by an Initialize() call. For generic job types, please include [assembly: RegisterGenericJobType(typeof({typeof(T)}))] in your source file.");
burstCompiled = false;
}
}
}