using System; using System.Runtime.CompilerServices; using Unity.IL2CPP.CompilerServices; using static Unity.Mathematics.math; namespace Unity.Mathematics.Geometry { /// /// Axis aligned bounding box (AABB) stored in min and max form. /// /// /// Axis aligned bounding boxes (AABB) are boxes where each side is parallel with one of the Cartesian coordinate axes /// X, Y, and Z. AABBs are useful for approximating the region an object (or collection of objects) occupies and quickly /// testing whether or not that object (or collection of objects) is relevant. Because they are axis aligned, they /// are very cheap to construct and perform overlap tests with them. /// [System.Serializable] [Il2CppEagerStaticClassConstruction] public struct MinMaxAABB : IEquatable { /// /// The minimum point contained by the AABB. /// /// /// If any component of is greater than then this AABB is invalid. /// /// public float3 Min; /// /// The maximum point contained by the AABB. /// /// /// If any component of is less than then this AABB is invalid. /// /// public float3 Max; /// /// Constructs the AABB with the given minimum and maximum. /// /// /// If you have a center and extents, you can call or /// to create the AABB. /// /// Minimum point inside AABB. /// Maximum point inside AABB. [MethodImpl(MethodImplOptions.AggressiveInlining)] public MinMaxAABB(float3 min, float3 max) { Min = min; Max = max; } /// /// Creates the AABB from a center and extents. /// /// /// This function takes full extents. It is the distance between and . /// If you have half extents, you can call . /// /// Center of AABB. /// Full extents of AABB. /// AABB created from inputs. [MethodImpl(MethodImplOptions.AggressiveInlining)] public static MinMaxAABB CreateFromCenterAndExtents(float3 center, float3 extents) { return CreateFromCenterAndHalfExtents(center, extents * 0.5f); } /// /// Creates the AABB from a center and half extents. /// /// /// This function takes half extents. It is half the distance between and . /// If you have full extents, you can call . /// /// Center of AABB. /// Half extents of AABB. /// AABB created from inputs. [MethodImpl(MethodImplOptions.AggressiveInlining)] public static MinMaxAABB CreateFromCenterAndHalfExtents(float3 center, float3 halfExtents) { return new MinMaxAABB(center - halfExtents, center + halfExtents); } /// /// Computes the extents of the AABB. /// /// /// Extents is the componentwise distance between min and max. /// public float3 Extents => Max - Min; /// /// Computes the half extents of the AABB. /// /// /// HalfExtents is half of the componentwise distance between min and max. Subtracting HalfExtents from Center /// gives Min and adding HalfExtents to Center gives Max. /// public float3 HalfExtents => (Max - Min) * 0.5f; /// /// Computes the center of the AABB. /// public float3 Center => (Max + Min) * 0.5f; /// /// Check if the AABB is valid. /// /// /// An AABB is considered valid if is componentwise less than or equal to . /// /// True if is componentwise less than or equal to . public bool IsValid => math.all(Min <= Max); /// /// Computes the surface area for this axis aligned bounding box. /// public float SurfaceArea { get { float3 diff = Max - Min; return 2 * math.dot(diff, diff.yzx); } } /// /// Tests if the input point is contained by the AABB. /// /// Point to test. /// True if AABB contains the input point. [MethodImpl(MethodImplOptions.AggressiveInlining)] public bool Contains(float3 point) => math.all(point >= Min & point <= Max); /// /// Tests if the input AABB is contained entirely by this AABB. /// /// AABB to test. /// True if input AABB is contained entirely by this AABB. [MethodImpl(MethodImplOptions.AggressiveInlining)] public bool Contains(MinMaxAABB aabb) => math.all((Min <= aabb.Min) & (Max >= aabb.Max)); /// /// Tests if the input AABB overlaps this AABB. /// /// AABB to test. /// True if input AABB overlaps with this AABB. [MethodImpl(MethodImplOptions.AggressiveInlining)] public bool Overlaps(MinMaxAABB aabb) { return math.all(Max >= aabb.Min & Min <= aabb.Max); } /// /// Expands the AABB by the given signed distance. /// /// /// Positive distance expands the AABB while negative distance shrinks the AABB. /// /// Signed distance to expand the AABB with. [MethodImpl(MethodImplOptions.AggressiveInlining)] public void Expand(float signedDistance) { Min -= signedDistance; Max += signedDistance; } /// /// Encapsulates the given AABB. /// /// /// Modifies this AABB so that it contains the given AABB. If the given AABB is already contained by this AABB, /// then this AABB doesn't change. /// /// /// AABB to encapsulate. [MethodImpl(MethodImplOptions.AggressiveInlining)] public void Encapsulate(MinMaxAABB aabb) { Min = math.min(Min, aabb.Min); Max = math.max(Max, aabb.Max); } /// /// Encapsulate the given point. /// /// /// Modifies this AABB so that it contains the given point. If the given point is already contained by this AABB, /// then this AABB doesn't change. /// /// /// Point to encapsulate. [MethodImpl(MethodImplOptions.AggressiveInlining)] public void Encapsulate(float3 point) { Min = math.min(Min, point); Max = math.max(Max, point); } [MethodImpl(MethodImplOptions.AggressiveInlining)] public bool Equals(MinMaxAABB other) { return Min.Equals(other.Min) && Max.Equals(other.Max); } [MethodImpl(MethodImplOptions.AggressiveInlining)] public override string ToString() { return string.Format("MinMaxAABB({0}, {1})", Min, Max); } } public static partial class Math { /// /// Transforms the AABB with the given transform. /// /// /// The resulting AABB encapsulates the transformed AABB which may not be axis aligned after the transformation. /// /// Transform to apply to AABB. /// AABB to be transformed. /// Transformed AABB. [MethodImpl(MethodImplOptions.AggressiveInlining)] public static MinMaxAABB Transform(RigidTransform transform, MinMaxAABB aabb) { float3 halfExtentsInA = aabb.HalfExtents; // Rotate each axis individually and find their new positions in the rotated space. float3 x = math.rotate(transform.rot, new float3(halfExtentsInA.x, 0, 0)); float3 y = math.rotate(transform.rot, new float3(0, halfExtentsInA.y, 0)); float3 z = math.rotate(transform.rot, new float3(0, 0, halfExtentsInA.z)); // Find the new max corner by summing the rotated axes. Absolute value of each axis // since we are trying to find the max corner. float3 halfExtentsInB = math.abs(x) + math.abs(y) + math.abs(z); float3 centerInB = math.transform(transform, aabb.Center); return new MinMaxAABB(centerInB - halfExtentsInB, centerInB + halfExtentsInB); } /// /// Transforms the AABB with the given transform. /// /// /// The resulting AABB encapsulates the transformed AABB which may not be axis aligned after the transformation. /// /// Transform to apply to AABB. /// AABB to be transformed. /// Transformed AABB. [MethodImpl(MethodImplOptions.AggressiveInlining)] public static MinMaxAABB Transform(float4x4 transform, MinMaxAABB aabb) { var transformed = Transform(new float3x3(transform), aabb); transformed.Min += transform.c3.xyz; transformed.Max += transform.c3.xyz; return transformed; } /// /// Transforms the AABB with the given transform. /// /// /// The resulting AABB encapsulates the transformed AABB which may not be axis aligned after the transformation. /// /// Transform to apply to AABB. /// AABB to be transformed. /// Transformed AABB. [MethodImpl(MethodImplOptions.AggressiveInlining)] public static MinMaxAABB Transform(float3x3 transform, MinMaxAABB aabb) { // From Christer Ericson's Real-Time Collision Detection on page 86 and 87. // We want the transformed minimum and maximums of the AABB. Multiplying a 3x3 matrix on the left of a // column vector looks like so: // // [ c0.x c1.x c2.x ] [ x ] [ c0.x * x + c1.x * y + c2.x * z ] // [ c0.y c1.y c2.y ] [ y ] = [ c0.y * x + c1.y * y + c2.y * z ] // [ c0.z c1.z c2.z ] [ z ] [ c0.z * x + c1.z * y + c2.z * z ] // // The column vectors we will use are the input AABB's min and max. Simply multiplying those two vectors // with the transformation matrix won't guarantee we get the new min and max since those are only two // points out of eight in the AABB and one of the other six may set the new min or max. // // To ensure we get the correct min and max, we must transform all eight points. But it's not necessary // to actually perform eight matrix multiplies to get our final result. Instead, we can build the min and // max incrementally by computing each term in the above matrix multiply separately then summing the min // (or max). For instance, to find the new minimum contributed by the original min and max x component, we // compute this: // // newMin.x = min(c0.x * Min.x, c0.x * Max.x); // newMin.y = min(c0.y * Min.x, c0.y * Max.x); // newMin.z = min(c0.z * Min.x, c0.z * Max.x); // // Then we add minimum contributed by the original min and max y components: // // newMin.x += min(c1.x * Min.y, c1.x * Max.y); // newMin.y += min(c1.y * Min.y, c1.y * Max.y); // newMin.z += min(c1.z * Min.y, c1.z * Max.y); // // And so on. Translation can be handled by simply initializing the new min and max with the translation // amount since it does not affect the min and max bounds in local space. var t1 = transform.c0.xyz * aabb.Min.xxx; var t2 = transform.c0.xyz * aabb.Max.xxx; var minMask = t1 < t2; var transformed = new MinMaxAABB(select(t2, t1, minMask), select(t2, t1, !minMask)); t1 = transform.c1.xyz * aabb.Min.yyy; t2 = transform.c1.xyz * aabb.Max.yyy; minMask = t1 < t2; transformed.Min += select(t2, t1, minMask); transformed.Max += select(t2, t1, !minMask); t1 = transform.c2.xyz * aabb.Min.zzz; t2 = transform.c2.xyz * aabb.Max.zzz; minMask = t1 < t2; transformed.Min += select(t2, t1, minMask); transformed.Max += select(t2, t1, !minMask); return transformed; } } }