using System.Collections.Generic; using Unity.Mathematics; using UnityEngine.Assertions; namespace UnityEngine.Rendering.RadeonRays { internal class AABB { public float3 Min; public float3 Max; public AABB() { Min = new float3(float.PositiveInfinity, float.PositiveInfinity, float.PositiveInfinity); Max = new float3(float.NegativeInfinity, float.NegativeInfinity, float.NegativeInfinity); } public AABB(float3 min, float3 max) { Min = min; Max = max; } public void Encapsulate(AABB aabb) { Min = math.min(Min, aabb.Min); Max = math.max(Max, aabb.Max); } public void Encapsulate(float3 point) { Min = math.min(Min, point); Max = math.max(Max, point); } public bool Contains(AABB rhs) { return rhs.Min.x >= Min.x && rhs.Min.y >= Min.y && rhs.Min.z >= Min.z && rhs.Max.x <= Max.x && rhs.Max.y <= Max.y && rhs.Max.z <= Max.z; } public bool IsValid() { return Min.x <= Max.x && Min.y <= Max.y && Min.z <= Max.z; } } internal class BvhCheck { const uint kInvalidID = ~0u; public class VertexBuffers { public GraphicsBuffer vertices; public GraphicsBuffer indices; public uint vertexBufferOffset = 0; public uint vertexCount; public uint vertexStride = 3; public uint indexBufferOffset = 0; public uint indexCount; }; public static double SurfaceArea(AABB aabb) { float3 edges = aabb.Max - aabb.Min; return 2.0f * (edges.x * edges.y + edges.x * edges.z + edges.z * edges.y); } public static double NodeSahCost(BvhNode node, AABB nodeAabb, AABB parentAabb) { double cost = node.child0 == kInvalidID ? node.child1 : 1.2f; return cost * SurfaceArea(nodeAabb) / SurfaceArea(parentAabb); } public static double CheckConsistency(VertexBuffers bvhVertexBuffers, GraphicsBuffer bvhBuffer, uint bvhBufferOffset, uint primitiveCount) { var header = new BvhHeader[1]; bvhBuffer.GetData(header, 0, (int)bvhBufferOffset, 1); return CheckConsistency(bvhVertexBuffers, bvhBuffer, bvhBufferOffset + 1, header[0].leafNodeCount, header[0].root, primitiveCount); } public static double CheckConsistency( VertexBuffers bvhVertexBuffers, GraphicsBuffer bvhBuffer, uint bvhBufferOffset, uint leafCount, uint rootAddr, uint primitiveCount) { var nodeCount = HlbvhBuilder.GetBvhNodeCount(leafCount); var bvhNodes = new BvhNode[nodeCount]; bvhBuffer.GetData(bvhNodes, 0, (int)bvhBufferOffset, (int)nodeCount); bool isTopLevel = bvhVertexBuffers == null; VertexBuffersCPU vertexBuffers = null; if (!isTopLevel) vertexBuffers = DownloadVertexData(bvhVertexBuffers); uint countedPrimitives = 0; var rootAabb = GetAabb(vertexBuffers, bvhNodes[rootAddr], isTopLevel); double sahCost = 0.0f; var q = new Queue<(uint Addr, uint Parent)>(); q.Enqueue((Addr: rootAddr, Parent: kInvalidID)); while (q.Count != 0) { var current = q.Dequeue(); uint addr = current.Addr; uint parent = current.Parent; var node = bvhNodes[addr]; AABB aabb = GetAabb(vertexBuffers, node, isTopLevel); sahCost += NodeSahCost(node, aabb, rootAabb); Assert.AreEqual(parent, node.parent); Assert.IsTrue(aabb.IsValid()); if (node.child0 != kInvalidID) { var leftAabb = GetAabb(vertexBuffers, bvhNodes[node.child0], isTopLevel); var rightAabb = GetAabb(vertexBuffers, bvhNodes[node.child1], isTopLevel); bool leftOk = (aabb.Contains(leftAabb)); bool rightOk = (aabb.Contains(rightAabb)); Assert.IsTrue(leftOk); Assert.IsTrue(rightOk); q.Enqueue((Addr: node.child0, Parent: addr)); q.Enqueue((Addr: node.child1, Parent: addr)); } else // leaf { countedPrimitives += isTopLevel ? 1 : node.aabb0_min[0]; } } Assert.AreEqual(countedPrimitives, primitiveCount); return sahCost; } private class VertexBuffersCPU { public float[] vertices; public uint[] indices; public uint vertexStride; }; static uint3 GetFaceIndices(uint[] indices, uint triangleIdx) { return new uint3( indices[3 * triangleIdx], indices[3 * triangleIdx + 1], indices[3 * triangleIdx + 2]); } static float3 GetVertex(float[] vertices, uint stride, uint idx) { uint indexInFloats = idx * stride; return new float3( vertices[indexInFloats], vertices[indexInFloats + 1], vertices[indexInFloats + 2]); } struct Triangle { public float3 v0; public float3 v1; public float3 v2; }; static Triangle GetTriangle(float[] vertices, uint stride, uint3 idx) { Triangle tri; tri.v0 = GetVertex(vertices, stride, idx.x); tri.v1 = GetVertex(vertices, stride, idx.y); tri.v2 = GetVertex(vertices, stride, idx.z); return tri; } static VertexBuffersCPU DownloadVertexData(VertexBuffers vertexBuffers) { var result = new VertexBuffersCPU(); result.vertices = new float[vertexBuffers.vertexCount * vertexBuffers.vertexStride]; result.indices = new uint[vertexBuffers.indexCount]; result.vertexStride = vertexBuffers.vertexStride; vertexBuffers.indices.GetData(result.indices, 0, (int)vertexBuffers.indexBufferOffset, (int)vertexBuffers.indexCount); vertexBuffers.vertices.GetData(result.vertices, 0, (int)vertexBuffers.vertexBufferOffset, (int)(vertexBuffers.vertexCount * vertexBuffers.vertexStride)); return result; } static AABB GetAabb(VertexBuffersCPU bvhVertexBuffers, BvhNode node, bool isTopLevel) { var aabb = new AABB(); if (node.child0 != kInvalidID || isTopLevel) { AABB left = new AABB(math.asfloat(node.aabb0_min), math.asfloat(node.aabb0_max)); aabb.Encapsulate(left); AABB right = new AABB(math.asfloat(node.aabb1_min), math.asfloat(node.aabb1_max)); aabb.Encapsulate(right); } else { int fisrtIndex = (int)node.child1; int triangleCount = (int)node.aabb0_min[0]; for (int i = 0; i < triangleCount; ++i) { uint index = (uint)(i + fisrtIndex); var triangleIndices = GetFaceIndices(bvhVertexBuffers.indices, index); var triangle = GetTriangle(bvhVertexBuffers.vertices, bvhVertexBuffers.vertexStride, triangleIndices); aabb.Encapsulate(triangle.v0); aabb.Encapsulate(triangle.v1); aabb.Encapsulate(triangle.v2); } } return aabb; } } }