Rasagar/Library/PackageCache/com.unity.render-pipelines.core/Runtime/Debug/ProbeVolumeDebugFunctions.hlsl
2024-08-26 23:07:20 +03:00

418 lines
16 KiB
HLSL

#ifndef PROBEVOLUMEDEBUG_FUNCTIONS_HLSL
#define PROBEVOLUMEDEBUG_FUNCTIONS_HLSL
float4 TransformPosition(float3 posOS)
{
return mul(UNITY_MATRIX_M, float4(posOS, 1.0f)) + float4(_APVWorldOffset, 0.0f);
}
#ifdef PROBE_VOLUME_DEBUG_FUNCTION_MAIN
v2f vert(appdata v)
{
v2f o;
ZERO_INITIALIZE(v2f, o);
UNITY_SETUP_INSTANCE_ID(v);
UNITY_TRANSFER_INSTANCE_ID(v, o);
if (!ShouldCull(o))
{
float3 probePosition_WS = TransformPosition(0.0f).xyz;
if (_AdjustmentVolumeCount > 0 && !IsInSelection(probePosition_WS))
{
DoCull(o);
}
else if (_DebugProbeVolumeSampling) // Only sampled probes (8 of them) should be shown, the other should be culled
{
float4 debugPosition = _positionNormalBuffer[0];
float4 debugNormal = _positionNormalBuffer[1];
float3 snappedProbePosition_WS; // worldspace position of main probe (a corner of the 8 probes cube)
float3 samplingPositionNoAntiLeak_WS; // // worldspace sampling position after applying 'NormalBias', 'ViewBias'
float probeDistance;
float3 normalizedOffset; // normalized offset between sampling position and snappedProbePosition
float validityWeight[8];
FindSamplingData(debugPosition.xyz, debugNormal.xyz, _RenderingLayerMask, snappedProbePosition_WS, samplingPositionNoAntiLeak_WS, probeDistance, normalizedOffset, validityWeight);
float samplingFactor = ComputeSamplingFactor(probePosition_WS, snappedProbePosition_WS, normalizedOffset, probeDistance);
// Let's cull probes that are not sampled
if (samplingFactor == -1.0f)
{
DoCull(o);
return o;
}
float4 wsPos = float4(probePosition_WS, 1.0);
wsPos += normalize(mul(UNITY_MATRIX_M, float4(v.vertex.xyz, 0.0f))) * _ProbeSize * 0.3f; // avoid scale from transformation matrix to be effective (otherwise some probes are bigger than others)
float4 pos = mul(UNITY_MATRIX_VP, wsPos);
float remappedDepth = Remap(-1.0f, 1.0f, 0.6f, 1.0f, pos.z); // remapped depth to draw gizmo on top of most other objects
o.vertex = float4(pos.x, pos.y, remappedDepth * pos.w, pos.w);
o.normal = normalize(mul(v.normal, (float3x3)UNITY_MATRIX_M));
o.color = v.color;
o.texCoord = v.texCoord;
o.samplingFactor_ValidityWeight = float2(samplingFactor, 1.0f);
}
else
{
float4 wsPos = TransformPosition(v.vertex.xyz * _ProbeSize);
o.vertex = mul(UNITY_MATRIX_VP, wsPos);
o.normal = normalize(mul(v.normal, (float3x3)UNITY_MATRIX_M));
if (_ShadingMode == DEBUGPROBESHADINGMODE_RENDERING_LAYER_MASKS)
{
o.centerCoordSS = _ScreenSize.xy * ComputeNormalizedDeviceCoordinatesWithZ(probePosition_WS, UNITY_MATRIX_VP).xy;
if (_APVLayerCount != 1 & (asuint(UNITY_ACCESS_INSTANCED_PROP(Props, _RenderingLayer)) & _RenderingLayerMask) == 0)
DoCull(o);
}
}
}
return o;
}
float4 frag(v2f i) : SV_Target
{
UNITY_SETUP_INSTANCE_ID(i);
if (_ShadingMode >= DEBUGPROBESHADINGMODE_SH && _ShadingMode <= DEBUGPROBESHADINGMODE_SHL0L1
|| _ShadingMode == DEBUGPROBESHADINGMODE_SKY_OCCLUSION_SH || _ShadingMode == DEBUGPROBESHADINGMODE_SKY_DIRECTION || _ShadingMode == DEBUGPROBESHADINGMODE_PROBE_OCCLUSION)
{
return float4(CalculateDiffuseLighting(i) * exp2(_ExposureCompensation) * GetCurrentExposureMultiplier(), 1);
}
else if (_ShadingMode == DEBUGPROBESHADINGMODE_INVALIDATED_BY_ADJUSTMENT_VOLUMES)
{
float4 defaultCol = float4(CalculateDiffuseLighting(i) * exp2(_ExposureCompensation) * GetCurrentExposureMultiplier(), 1);
float touchupAction = UNITY_ACCESS_INSTANCED_PROP(Props, _TouchupedByVolume);
if (touchupAction > 0 && touchupAction < 1)
{
return float4(1, 0, 0, 1);
}
return defaultCol;
}
else if (_ShadingMode == DEBUGPROBESHADINGMODE_VALIDITY)
{
float validity = UNITY_ACCESS_INSTANCED_PROP(Props, _Validity);
float threshold = PROBE_VALIDITY_THRESHOLD;
return lerp(float4(0, 1, 0, 1), float4(1, 0, 0, 1), validity > threshold);
}
else if (_ShadingMode == DEBUGPROBESHADINGMODE_VALIDITY_OVER_DILATION_THRESHOLD)
{
float validity = UNITY_ACCESS_INSTANCED_PROP(Props, _Validity);
float threshold = UNITY_ACCESS_INSTANCED_PROP(Props, _DilationThreshold);
if (validity > threshold)
{
return float4(1, 0, 0, 1);
}
else
{
return float4(0, 1, 0, 1);
}
}
else if (_ShadingMode == DEBUGPROBESHADINGMODE_RENDERING_LAYER_MASKS)
{
float3 colors[4] = {
float3(230, 159, 0) / 255.0f,
float3(0, 158, 115) / 255.0f,
float3(0, 114, 178) / 255.0f,
float3(204, 121, 167) / 255.0f,
};
if (_APVLayerCount == 1) return _DebugEmptyProbeData; // Rendering layers are not baked
uint renderingLayer = asuint(UNITY_ACCESS_INSTANCED_PROP(Props, _RenderingLayer)) & _RenderingLayerMask;
uint stripeSize = 8;
float3 result = float3(0, 0, 0);
int2 positionSS = i.vertex.xy;
uint layerId = 0, layerCount = countbits(renderingLayer);
int colorIndex = 0;
if (layerCount >= 2 && positionSS.y < i.centerCoordSS.y)
colorIndex = 1;
if (layerCount >= 3 && colorIndex == 1 && positionSS.x < i.centerCoordSS.x)
colorIndex = 2;
if (layerCount >= 4 && colorIndex == 0 && positionSS.x < i.centerCoordSS.x)
colorIndex = 3;
for (uint l = 0; (l < _APVLayerCount) && (layerId < layerCount); l++)
{
[branch]
if (renderingLayer & (1U << l))
{
if (colorIndex == 0)
result = colors[l];
colorIndex--;
}
}
// NdotV to make the debug view easier to understand
float3 N = normalize(i.normal);
float3 V = UNITY_MATRIX_V[2].xyz;
return float4(result * max(0, dot(N, V)), 1);
}
else if (_ShadingMode == DEBUGPROBESHADINGMODE_SIZE)
{
float4 col = lerp(float4(0, 1, 0, 1), float4(1, 0, 0, 1), UNITY_ACCESS_INSTANCED_PROP(Props, _RelativeSize));
return col;
}
return _Color;
}
#endif
#ifdef PROBE_VOLUME_DEBUG_FUNCTION_FRAGMENTATION
int _ChunkCount;
StructuredBuffer<int> _DebugFragmentation;
struct Attributes
{
uint vertexID : SV_VertexID;
};
struct Varyings
{
float4 positionCS : SV_POSITION;
float2 texcoord : TEXCOORD0;
};
Varyings Vert(Attributes input)
{
Varyings output;
output.positionCS = GetFullScreenTriangleVertexPosition(input.vertexID);
output.texcoord = GetFullScreenTriangleTexCoord(input.vertexID);
return output;
}
float4 Frag(Varyings input) : SV_Target
{
int lineSize = (int)ceil(sqrt(_ChunkCount));
int2 coord = (int2)(input.texcoord * lineSize);
int index = coord.y * lineSize + coord.x;
float4 color = 0.0;
if (index < _ChunkCount && _DebugFragmentation[index] != -1)
color = float4(0.0, 1.0, 0.0, 1.0);
return color;
}
#endif
#ifdef PROBE_VOLUME_DEBUG_FUNCTION_OFFSET
v2f vert(appdata v)
{
v2f o;
UNITY_SETUP_INSTANCE_ID(v);
UNITY_TRANSFER_INSTANCE_ID(v, o);
o.vertex = 0;
o.normal = 0;
float3 probePosition_WS = TransformPosition(0.0f).xyz;
float3 offset = UNITY_ACCESS_INSTANCED_PROP(Props, _Offset).xyz;
float offsetLenSqr = dot(offset, offset);
if (offsetLenSqr <= 1e-6f)
{
DoCull(o);
}
else if (_AdjustmentVolumeCount > 0 && !IsInSelection(probePosition_WS))
{
DoCull(o);
}
else if (!ShouldCull(o))
{
float4 wsPos = TransformPosition(v.vertex.xyz * float3(_OffsetSize, _OffsetSize, 1.0f));
o.vertex = mul(UNITY_MATRIX_VP, wsPos);
o.normal = normalize(mul(v.normal, (float3x3)UNITY_MATRIX_M));
}
return o;
}
float4 frag(v2f i) : SV_Target
{
return float4(0, 0, 1, 1);
}
#endif
#ifdef PROBE_VOLUME_DEBUG_FUNCTION_SAMPLING
v2f vert(appdata v)
{
v2f o;
ZERO_INITIALIZE(v2f, o);
float4 debugPosition = _positionNormalBuffer[0];
float4 debugNormal = _positionNormalBuffer[1];
float4 wsPos = float4(0.0f, 0.0f, 0.0f, 1.0f);
float samplingFactor = 0.0f; // probe sampling weight (when needed) is compute in vertex shader. Usefull for drawing 8 debug quads showing weights
float3 snappedProbePosition_WS; // worldspace position of main probe (a corner of the 8 probes cube)
float3 samplingPositionNoAntiLeak_WS; // worldspace sampling position after applying 'NormalBias', 'ViewBias'
float probeDistance;
float3 normalizedOffset; // normalized offset between sampling position and snappedProbePosition
float validityWeights[8];
float validityWeight = 1.0f;
FindSamplingData(debugPosition.xyz, debugNormal.xyz, _RenderingLayerMask, snappedProbePosition_WS, samplingPositionNoAntiLeak_WS, probeDistance, normalizedOffset, validityWeights);
// QUADS to write the sampling factor of each probe
// each QUAD has an individual ID in vertex color blue channel
if (v.color.z)
{
// QUAD 01
float3 quadPosition = snappedProbePosition_WS;
validityWeight = validityWeights[0];
// QUAD 02
if (abs(v.color.z - 0.2f) < 0.02f)
{
quadPosition = snappedProbePosition_WS + float3(0.0f, 1.0f, 0.0f) * probeDistance;
validityWeight = validityWeights[2];
}
// QUAD 03
if (abs(v.color.z - 0.3f) < 0.02f)
{
quadPosition = snappedProbePosition_WS + float3(1.0f, 1.0f, 0.0f) * probeDistance;
validityWeight = validityWeights[3];
}
// QUAD 04
if (abs(v.color.z - 0.4f) < 0.02f)
{
quadPosition = snappedProbePosition_WS + float3(1.0f, 0.0f, 0.0f) * probeDistance;
validityWeight = validityWeights[1];
}
// QUAD 05
if (abs(v.color.z - 0.5f) < 0.02f)
{
quadPosition = snappedProbePosition_WS + float3(0.0f, 0.0f, 1.0f) * probeDistance;
validityWeight = validityWeights[4];
}
// QUAD 06
if (abs(v.color.z - 0.6f) < 0.02f)
{
quadPosition = snappedProbePosition_WS + float3(0.0f, 1.0f, 1.0f) * probeDistance;
validityWeight = validityWeights[6];
}
// QUAD 07
if (abs(v.color.z - 0.7f) < 0.02f)
{
quadPosition = snappedProbePosition_WS + float3(1.0f, 1.0f, 1.0f) * probeDistance;
validityWeight = validityWeights[7];
}
// QUAD 08
if (abs(v.color.z - 0.8f) < 0.02f)
{
quadPosition = snappedProbePosition_WS + float3(1.0f, 0.0f, 1.0f) * probeDistance;
validityWeight = validityWeights[5];
}
if (_APVLeakReductionMode == APVLEAKREDUCTIONMODE_QUALITY)
samplingFactor = validityWeight; // this is not 100% accurate in some cases (cause we do max 3 samples)
else
samplingFactor = ComputeSamplingFactor(quadPosition, snappedProbePosition_WS, normalizedOffset, probeDistance);
float4 cameraUp = mul(UNITY_MATRIX_I_V, float4(0.0f, 1.0f, 0.0f, 0.0f));
float4 cameraRight = -mul(UNITY_MATRIX_I_V, float4(1.0f, 0.0f, 0.0f, 0.0f));
wsPos = mul(UNITY_MATRIX_M, float4(0.0f, 0.0f, 0.0f, 1.0f));
wsPos += float4(quadPosition + cameraUp.xyz * _ProbeSize / 1.5f, 0.0f);
wsPos += float4((v.vertex.x * cameraRight.xyz + v.vertex.y * cameraUp.xyz * 0.5f) * 20.0f * _ProbeSize, 0.0f);
}
// ARROW to show the position and normal of the debugged fragment
else if (v.color.y)
{
float3 forward = normalize(debugNormal.xyz);
float3 up = float3(0.0f, 1.0f, 0.0f); if (dot(up, forward) > 0.9f) { up = float3(1.0f, 0.0f, 0.0f); }
float3 right = normalize(cross(forward, up));
up = cross(right, forward);
float3x3 orientation = float3x3(
right.x, up.x, forward.x,
right.y, up.y, forward.y,
right.z, up.z, forward.z);
wsPos = float4(mul(orientation, (v.vertex.xyz * _ProbeSize * 5.0f)), 1.0f);
wsPos = mul(UNITY_MATRIX_M, wsPos);
wsPos.xyz += debugPosition.xyz;
}
// LOCATOR to debug sampling position
else
{
if (v.color.x) // DEBUG NORMAL + VIEW BIAS
{
if (_ForceDebugNormalViewBias)
{
wsPos = mul(UNITY_MATRIX_M, float4(v.vertex.xyz * _ProbeSize * 1.5f, 1.0f));
wsPos += float4(samplingPositionNoAntiLeak_WS, 0.0f);
}
else
{
DoCull(o);
return o;
}
}
else // DEBUG NORMAL + VIEW BIAS + ANTI LEAK
{
wsPos = mul(UNITY_MATRIX_M, float4(v.vertex.xyz * _ProbeSize * 3.0f, 1.0f));
wsPos += float4(snappedProbePosition_WS + normalizedOffset * probeDistance, 0.0f);
}
}
float4 pos = mul(UNITY_MATRIX_VP, wsPos);
float remappedDepth = Remap(-1.0f, 1.0f, 0.6f, 1.0f, pos.z); // remapped depth to draw gizmo on top of most other objects
o.vertex = float4(pos.x, pos.y, remappedDepth * pos.w, pos.w);
o.normal = normalize(mul(v.normal, (float3x3)UNITY_MATRIX_M));
o.color = v.color;
o.texCoord = v.texCoord;
o.samplingFactor_ValidityWeight = float2(samplingFactor, validityWeight);
return o;
}
float4 frag(v2f i) : SV_Target
{
// QUADS to write the sampling factor of each probe
if (i.color.z)
{
float samplingFactor = i.samplingFactor_ValidityWeight.x;
float validityWeight = i.samplingFactor_ValidityWeight.y;
half4 color = WriteFractNumber(samplingFactor, i.texCoord);
if (validityWeight > 0.0f)
color = lerp(half4(0.0f, 0.0f, 0.0f, 1.0f), half4(0.0f, 1.0f, 0.0f, 1.0f), color.x);
else
color = lerp(half4(1.0f, 1.0f, 1.0f, 1.0f), half4(1.0f, 0.0f, 0.0f, 1.0f), color.x);
return color;
}
// ARROW to show debugging position and normal
else if (i.color.y)
{
return _DebugArrowColor;
}
// LOCATOR to debug sampling position
else
{
if (i.color.x) // DEBUG NORMAL + VIEW BIAS
return _DebugLocator02Color;
else // DEBUG NORMAL + VIEW BIAS + ANTILEAK MODE
return _DebugLocator01Color;
}
}
#endif
#endif // PROBEVOLUMEDEBUG_FUNCTIONS_HLSL