forked from BilalY/Rasagar
291 lines
14 KiB
C#
291 lines
14 KiB
C#
using System;
|
|
using System.Diagnostics;
|
|
using Unity.Burst;
|
|
using Unity.Mathematics;
|
|
|
|
namespace Unity.Collections
|
|
{
|
|
/// <summary>
|
|
/// A type that uses Huffman encoding to encode values in a lossless manner.
|
|
/// </summary>
|
|
/// <remarks>
|
|
/// This type puts values into a manageable number of power-of-two-sized buckets.
|
|
/// It codes the bucket index with Huffman, and uses several raw bits that correspond
|
|
/// to the size of the bucket to code the position in the bucket.
|
|
///
|
|
/// For example, if you want to send a 32-bit integer over the network, it's
|
|
/// impractical to create a Huffman tree that encompasses every value the integer
|
|
/// can take because it requires a tree with 2^32 leaves. This type manages that situation.
|
|
///
|
|
/// The buckets are small, around 0, and become progressively larger as the data moves away from zero.
|
|
/// Because most data is deltas against predictions, most values are small and most of the redundancy
|
|
/// is in the error's size and not in the values of that size we end up hitting.
|
|
///
|
|
/// The context is as a sub-model that has its own statistics and uses its own Huffman tree.
|
|
/// When using the context to read and write a specific value, the context must always be the same.
|
|
/// The benefit of using multiple contexts is that it allows you to separate the statistics of things that have
|
|
/// different expected distributions, which leads to more precise statistics, which again yields better compression.
|
|
/// More contexts does, however, result in a marginal cost of a slightly larger model.
|
|
/// </remarks>
|
|
[GenerateTestsForBurstCompatibility]
|
|
public unsafe struct StreamCompressionModel
|
|
{
|
|
internal static readonly byte[] k_BucketSizes =
|
|
{
|
|
0, 0, 1, 2, 3, 4, 6, 8, 10, 12, 15, 18, 21, 24, 27, 32
|
|
};
|
|
|
|
internal static readonly uint[] k_BucketOffsets =
|
|
{
|
|
0, 1, 2, 4, 8, 16, 32, 96, 352, 1376, 5472, 38240, 300384, 2397536, 19174752, 153392480
|
|
};
|
|
internal static readonly int[] k_FirstBucketCandidate =
|
|
{
|
|
// 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
|
|
15, 15, 15, 15, 14, 14, 14, 13, 13, 13, 12, 12, 12, 11, 11, 11, 10, 10, 10, 9, 9, 8, 8, 7, 7, 6, 5, 4, 3, 2, 1, 1, 0
|
|
};
|
|
internal static readonly byte[] k_DefaultModelData = { 16, // 16 symbols
|
|
2, 3, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 6, 6, 6, 6,
|
|
0, 0 }; // no contexts
|
|
internal const int k_AlphabetSize = 16;
|
|
internal const int k_MaxHuffmanSymbolLength = 6;
|
|
internal const int k_MaxContexts = 1;
|
|
byte m_Initialized;
|
|
|
|
static class SharedStaticCompressionModel
|
|
{
|
|
internal static readonly SharedStatic<StreamCompressionModel> Default = SharedStatic<StreamCompressionModel>.GetOrCreate<StreamCompressionModel>();
|
|
}
|
|
|
|
/// <summary>
|
|
/// A shared singleton instance of <see cref="StreamCompressionModel"/>, this instance is initialized using
|
|
/// hardcoded bucket parameters and model.
|
|
/// </summary>
|
|
public static StreamCompressionModel Default {
|
|
get
|
|
{
|
|
if (SharedStaticCompressionModel.Default.Data.m_Initialized == 1)
|
|
{
|
|
return SharedStaticCompressionModel.Default.Data;
|
|
}
|
|
Initialize();
|
|
SharedStaticCompressionModel.Default.Data.m_Initialized = 1;
|
|
|
|
return SharedStaticCompressionModel.Default.Data;
|
|
}
|
|
}
|
|
|
|
static void Initialize()
|
|
{
|
|
for (int i = 0; i < k_AlphabetSize; ++i)
|
|
{
|
|
SharedStaticCompressionModel.Default.Data.bucketSizes[i] = k_BucketSizes[i];
|
|
SharedStaticCompressionModel.Default.Data.bucketOffsets[i] = k_BucketOffsets[i];
|
|
}
|
|
var modelData = new NativeArray<byte>(k_DefaultModelData.Length, Allocator.Temp);
|
|
for (var index = 0; index < k_DefaultModelData.Length; index++)
|
|
{
|
|
modelData[index] = k_DefaultModelData[index];
|
|
}
|
|
|
|
//int numContexts = NetworkConfig.maxContexts;
|
|
int numContexts = 1;
|
|
var symbolLengths = new NativeArray<byte>(numContexts * k_AlphabetSize, Allocator.Temp);
|
|
|
|
int readOffset = 0;
|
|
{
|
|
// default model
|
|
int defaultModelAlphabetSize = modelData[readOffset++];
|
|
CheckAlphabetSize(defaultModelAlphabetSize);
|
|
|
|
for (int i = 0; i < k_AlphabetSize; i++)
|
|
{
|
|
byte length = modelData[readOffset++];
|
|
for (int context = 0; context < numContexts; context++)
|
|
{
|
|
symbolLengths[numContexts * context + i] = length;
|
|
}
|
|
}
|
|
|
|
// other models
|
|
int numModels = modelData[readOffset] | (modelData[readOffset + 1] << 8);
|
|
readOffset += 2;
|
|
for (int model = 0; model < numModels; model++)
|
|
{
|
|
int context = modelData[readOffset] | (modelData[readOffset + 1] << 8);
|
|
readOffset += 2;
|
|
|
|
int modelAlphabetSize = modelData[readOffset++];
|
|
CheckAlphabetSize(modelAlphabetSize);
|
|
for (int i = 0; i < k_AlphabetSize; i++)
|
|
{
|
|
byte length = modelData[readOffset++];
|
|
symbolLengths[numContexts * context + i] = length;
|
|
}
|
|
}
|
|
}
|
|
|
|
// generate tables
|
|
var tmpSymbolLengths = new NativeArray<byte>(k_AlphabetSize, Allocator.Temp);
|
|
var tmpSymbolDecodeTable = new NativeArray<ushort>(1 << k_MaxHuffmanSymbolLength, Allocator.Temp);
|
|
var symbolCodes = new NativeArray<byte>(k_AlphabetSize, Allocator.Temp);
|
|
|
|
for (int context = 0; context < numContexts; context++)
|
|
{
|
|
for (int i = 0; i < k_AlphabetSize; i++)
|
|
tmpSymbolLengths[i] = symbolLengths[numContexts * context + i];
|
|
|
|
GenerateHuffmanCodes(symbolCodes, 0, tmpSymbolLengths, 0, k_AlphabetSize, k_MaxHuffmanSymbolLength);
|
|
GenerateHuffmanDecodeTable(tmpSymbolDecodeTable, 0, tmpSymbolLengths, symbolCodes, k_AlphabetSize, k_MaxHuffmanSymbolLength);
|
|
for (int i = 0; i < k_AlphabetSize; i++)
|
|
{
|
|
SharedStaticCompressionModel.Default.Data.encodeTable[context * k_AlphabetSize + i] = (ushort)((symbolCodes[i] << 8) | symbolLengths[numContexts * context + i]);
|
|
}
|
|
for (int i = 0; i < (1 << k_MaxHuffmanSymbolLength); i++)
|
|
{
|
|
SharedStaticCompressionModel.Default.Data.decodeTable[context * (1 << k_MaxHuffmanSymbolLength) + i] = tmpSymbolDecodeTable[i];
|
|
}
|
|
}
|
|
}
|
|
|
|
static void GenerateHuffmanCodes(NativeArray<byte> symbolCodes, int symbolCodesOffset, NativeArray<byte> symbolLengths, int symbolLengthsOffset, int alphabetSize, int maxCodeLength)
|
|
{
|
|
CheckAlphabetAndMaxCodeLength(alphabetSize, maxCodeLength);
|
|
|
|
var lengthCounts = new NativeArray<byte>(maxCodeLength + 1, Allocator.Temp);
|
|
var symbolList = new NativeArray<byte>((maxCodeLength + 1) * alphabetSize, Allocator.Temp);
|
|
|
|
//byte[] symbol_list[(MAX_HUFFMAN_CODE_LENGTH + 1u) * MAX_NUM_HUFFMAN_SYMBOLS];
|
|
for (int symbol = 0; symbol < alphabetSize; symbol++)
|
|
{
|
|
int symbolLength = symbolLengths[symbol + symbolLengthsOffset];
|
|
CheckExceedMaxCodeLength(symbolLength, maxCodeLength);
|
|
symbolList[(maxCodeLength + 1) * symbolLength + lengthCounts[symbolLength]++] = (byte)symbol;
|
|
}
|
|
|
|
uint nextCodeWord = 0;
|
|
for (int length = 1; length <= maxCodeLength; length++)
|
|
{
|
|
int length_count = lengthCounts[length];
|
|
for (int i = 0; i < length_count; i++)
|
|
{
|
|
int symbol = symbolList[(maxCodeLength + 1) * length + i];
|
|
CheckSymbolLength(symbolLengths, symbolLengthsOffset, symbol, length);
|
|
symbolCodes[symbol + symbolCodesOffset] = (byte)ReverseBits(nextCodeWord++, length);
|
|
}
|
|
nextCodeWord <<= 1;
|
|
}
|
|
}
|
|
|
|
static uint ReverseBits(uint value, int num_bits)
|
|
{
|
|
value = ((value & 0x55555555u) << 1) | ((value & 0xAAAAAAAAu) >> 1);
|
|
value = ((value & 0x33333333u) << 2) | ((value & 0xCCCCCCCCu) >> 2);
|
|
value = ((value & 0x0F0F0F0Fu) << 4) | ((value & 0xF0F0F0F0u) >> 4);
|
|
value = ((value & 0x00FF00FFu) << 8) | ((value & 0xFF00FF00u) >> 8);
|
|
value = (value << 16) | (value >> 16);
|
|
return value >> (32 - num_bits);
|
|
}
|
|
|
|
// decode table entries: (symbol << 8) | length
|
|
static void GenerateHuffmanDecodeTable(NativeArray<ushort> decodeTable, int decodeTableOffset, NativeArray<byte> symbolLengths, NativeArray<byte> symbolCodes, int alphabetSize, int maxCodeLength)
|
|
{
|
|
CheckAlphabetAndMaxCodeLength(alphabetSize, maxCodeLength);
|
|
|
|
uint maxCode = 1u << maxCodeLength;
|
|
for (int symbol = 0; symbol < alphabetSize; symbol++)
|
|
{
|
|
int length = symbolLengths[symbol];
|
|
CheckExceedMaxCodeLength(length, maxCodeLength);
|
|
if (length > 0)
|
|
{
|
|
uint code = symbolCodes[symbol];
|
|
uint step = 1u << length;
|
|
do
|
|
{
|
|
decodeTable[(int)(decodeTableOffset + code)] = (ushort)(symbol << 8 | length);
|
|
code += step;
|
|
}
|
|
while (code < maxCode);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// <summary>
|
|
/// Bucket n starts at bucketOffsets[n] and ends at bucketOffsets[n] + (1 << bucketSizes[n]).
|
|
/// (code << 8) | length
|
|
/// </summary>
|
|
internal fixed ushort encodeTable[k_MaxContexts * k_AlphabetSize];
|
|
/// <summary>
|
|
/// Bucket n starts at bucketOffsets[n] and ends at bucketOffsets[n] + (1 << bucketSizes[n]).
|
|
/// (symbol << 8) | length
|
|
/// </summary>
|
|
internal fixed ushort decodeTable[k_MaxContexts * (1 << k_MaxHuffmanSymbolLength)];
|
|
/// <summary>
|
|
/// Specifies the sizes of the buckets in bits, so a bucket of n bits has 2^n values.
|
|
/// </summary>
|
|
internal fixed byte bucketSizes[k_AlphabetSize];
|
|
/// <summary>
|
|
/// Specifies the starting positions of the bucket.
|
|
/// </summary>
|
|
internal fixed uint bucketOffsets[k_AlphabetSize];
|
|
|
|
/// <summary>
|
|
/// Calculates the bucket index into the <see cref="encodeTable"/> where the specified value should be written.
|
|
/// </summary>
|
|
/// <param name="value">A 4-byte unsigned integer value to find a bucket for.</param>
|
|
/// <returns>The bucket index where to put the value.</returns>
|
|
readonly public int CalculateBucket(uint value)
|
|
{
|
|
int bucketIndex = k_FirstBucketCandidate[math.lzcnt(value)];
|
|
if (bucketIndex + 1 < k_AlphabetSize && value >= bucketOffsets[bucketIndex + 1])
|
|
bucketIndex++;
|
|
|
|
return bucketIndex;
|
|
}
|
|
|
|
/// <summary>
|
|
/// The compressed size in bits of the given unsigned integer value
|
|
/// </summary>
|
|
/// <param name="value">the unsigned int value you want to compress</param>
|
|
/// <returns></returns>
|
|
public readonly int GetCompressedSizeInBits(uint value)
|
|
{
|
|
int bucket = CalculateBucket(value);
|
|
int bits = bucketSizes[bucket];
|
|
ushort encodeEntry = encodeTable[bucket];
|
|
return (encodeEntry & 0xff) + bits;
|
|
}
|
|
|
|
[Conditional("ENABLE_UNITY_COLLECTIONS_CHECKS"), Conditional("UNITY_DOTS_DEBUG")]
|
|
static void CheckAlphabetSize(int alphabetSize)
|
|
{
|
|
if (alphabetSize != k_AlphabetSize)
|
|
{
|
|
throw new InvalidOperationException("The alphabet size of compression models must be " + k_AlphabetSize);
|
|
}
|
|
}
|
|
|
|
[Conditional("ENABLE_UNITY_COLLECTIONS_CHECKS"), Conditional("UNITY_DOTS_DEBUG")]
|
|
static void CheckSymbolLength(NativeArray<byte> symbolLengths, int symbolLengthsOffset, int symbol, int length)
|
|
{
|
|
if (symbolLengths[symbol + symbolLengthsOffset] != length)
|
|
throw new InvalidOperationException("Incorrect symbol length");
|
|
}
|
|
|
|
[Conditional("ENABLE_UNITY_COLLECTIONS_CHECKS"), Conditional("UNITY_DOTS_DEBUG")]
|
|
static void CheckAlphabetAndMaxCodeLength(int alphabetSize, int maxCodeLength)
|
|
{
|
|
if (alphabetSize > 256 || maxCodeLength > 8)
|
|
throw new InvalidOperationException("Can only generate huffman codes up to alphabet size 256 and maximum code length 8");
|
|
}
|
|
|
|
[Conditional("ENABLE_UNITY_COLLECTIONS_CHECKS"), Conditional("UNITY_DOTS_DEBUG")]
|
|
static void CheckExceedMaxCodeLength(int length, int maxCodeLength)
|
|
{
|
|
if (length > maxCodeLength)
|
|
throw new InvalidOperationException("Maximum code length exceeded");
|
|
}
|
|
}
|
|
}
|